Advertisement

Regioselectivity in the [2 + 2] cyclo-addition reaction of triplet carbonyl compounds to substituted alkenes (Paterno-Büchi reaction): A spin-polarized conceptual DFT approach

  • 135 Accesses

  • 12 Citations

Abstract

Regioselectivity of the photochemical [2 + 2] cyclo-addition of triplet carbonyl compounds with a series of ground state electron-rich and electron-poor alkenes, the Paterno-Büchi reaction, is studied. Activation barriers for the first step of the triplet reaction are computed in the case of the O-attack. Next, the observed regioselectivity is explained using a series of DFT-based reactivity indices. In the first step, we use the local softness and the local HSAB principle within a softness matching approach, and explain the relative activation barriers of the addition step. In the final step, the regioselectivity is assessed within the framework of spin-polarized conceptual density functional theory, considering response functions of the system’s external potential v, number of electronsN and spin numberN s , being the difference between the number ofα andβ electrons in the spin-polarized system. Although the concept of local spin philicity, introduced recently within this theory, appears less suited to predict the regioselectivity in this reaction, the correct regioselectivity emerges from considering an interaction between the largest values of the generalized Fukui functionsf ss on both interacting molecules.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Paterno E and Chieffi G 1909Gazz. Chim. Ital. 39 341

  2. 2.

    Büchi G, Inman C G and Lipinsky E S 1954J. Am. Chem. Soc. 76 4327

  3. 3.

    Turro N J 1978Modern molecular photochemistry (Menlo Park, CA: Benjamin/Cummings)

  4. 4.

    March J and Smith M B 2001March’s advanced organic chemistry (New York: Wiley)

  5. 5.

    Turro N J, Wriede P A, Dalton J C, Arnold D and Glick A 1968J. Am. Chem. Soc. 90 6863

  6. 6.

    Turro N J and Wriede P A 1968J. Am. Chem. Soc. 90 6863

  7. 7.

    Barltrop J A and Carless H A J 1972J. Am. Chem. Soc. 94 8761

  8. 8.

    Dowd P, Gold A and Sachdev K 1970J. Am. Chem. Soc. 92 5725

  9. 9.

    Palmer I J, Ragazos I N, Bernardi F, Olivucci M and Robb M A 1994J. Am. Chem. Soc. 116 2121

  10. 10.

    Kutateladze A G 2001J. Am. Chem. Soc. 123 9279

  11. 11.

    Sengupta D, Chandra A K and Nguyen M T 1997J. Org. Chem. 62 6404

  12. 12.

    Yang N C and Eisenhardt W 1971J. Am. Chem. Soc. 93 1279

  13. 13.

    Muller F and Mattay J 1993Chem. Rev. 93 99

  14. 14.

    Dowd P, Gold A and Sachdev K 1970J. Am. Chem. Soc. 92 5725

  15. 15.

    Arnold D R, Hinman R L and Glick A H 1964Tetrahedron Lett. 1425

  16. 16.

    Arnold D R 1968Adv. Photochem. 6 301

  17. 17.

    Farid S, Hartman S E and DeBoer C D 1975J. Am. Chem. Soc. 97 808

  18. 18.

    Freilich S C and Peters K S 1985J. Am. Chem. Soc. 107 3819

  19. 19.

    Zimmerman H 1966Science 153 837

  20. 20.

    D’Auria M, Emanuele L and Racioppi R 2004J. Photochem. Photobiol. A163 103

  21. 21.

    Ciufolini M C, Rivera-Fortin M A, Zuzukin V and Whitmire K H 1994J. Am. Chem. Soc. 98 1994

  22. 22.

    Hu S and Neckers D C 1997J. Org. Chem. 62 564

  23. 23.

    Howell A R, Fan R and Truong A 1996Tetrahedron Lett. 37 8651

  24. 24.

    Fleming S A and Gao J J 1997Tetrahedron Lett. 38 5407

  25. 25.

    Griesbeck A G and Bondock S 2001J. Am. Chem. Soc. 123 6191

  26. 26.

    Adam W, Peters K, Peters E M and Stegmann V R 2000J. Am. Chem. Soc. 122 2958

  27. 27. (a)

    Parr R G and Yang W 1989Density functional theory of atoms and molecules (New York: Oxford University Press)

  28. 27. (b)

    Parr R G and Yang W 1995Annu. Rev. Phys. Chem. 46 701

  29. 27. (c)

    Kohn W, Becke A D and Parr R G 1996J. Phys. Chem. 100 12974

  30. 27. (d)

    Chermette H 1999J. Comput. Chem. 20 129

  31. 27. (e)

    Geerlings P, De Proft F and Langenaeker W 1999Adv. Quant. Chem. 33 303

  32. 27. (f)

    Geerlings P and De Proft F 2002Int. J. Mol. Sci. 3 276

  33. 27. (g)

    Geerlings P, De Proft F and Langenaeker W 2003Chem. Rev. 103 1793

  34. 28.

    Parr R G, Donnelly R A, Levy M and Palke W E 1978J. Chem. Phys. 68 3801

  35. 29.

    For a detailed account on the different electronegativity scales introduced see e.g. Mullay J 1987 inElectronegativity: Structure and bonding (eds) K D Sen and C K Jørgenson (Berlin, Heidelberg: Springer-Verlag) vol 66, p. 1

  36. 30. (a)

    Pearson R G 1963J. Am. Chem. Soc. 85 3533

  37. 30. (b)

    Pearson R G 1997Chemical hardness (New York: John Wiley & Sons)

  38. 31.

    Parr R G and Pearson R G 1983J. Am. Chem. Soc. 105 7512

  39. 32.

    Yang W and Parr R G 1985Proc. Natl. Acad. Sci. USA 82 6723

  40. 33.

    Lee C, Yang W and Parr R G 1988J. Mol. Struct. (Theochem.)163 305

  41. 34.

    Parr R G and Yang W 1984J. Am. Chem. Soc. 106 4049

  42. 35.

    Yang W and Mortier W J 1986J. Am. Chem. Soc. 106 5708

  43. 36.

    Chattaraj P K, Lee H and Parr R G 1991J. Am. Chem. Soc. 113 1855

  44. 37. (a)

    Gázquez J L 1993 inChemical hardness: Structure and bonding (ed.) K D Sen vol. 80, p. 27

  45. 37. (b)

    Méndez F and Gázquez J L 1994J. Am. Chem. Soc. 116 9298

  46. 37. (c)

    Gázquez J L and Méndez F 1994J. Phys. Chem. 98 4591

  47. 37. (d)

    Méndez F and Gázquez J L 1994Proc. Indian Acad. Sci. 106 183

  48. 37. (e)

    Damoun S, Van de Woude G, Méndez F and Geerlings P 1997J. Phys. Chem. A101 886

  49. 37. (f)

    Geerlings P and De Proft F 2000Int. J. Quantum Chem. 80 227

  50. 38.

    Hohenberg P and Kohn W 1964Phys. Rev. 136 B864

  51. 39.

    Runge E and Gross E K U 1984Phys. Rev. Lett. 52 997

  52. 40.

    Kohl H and Dreizler R M 1986Phys. Rev. Lett. 56 737

  53. 41. (a)

    Chattaraj P K and Poddar J 1998J. Phys. Chem. A102 9944

  54. 41. (b)

    Chattaraj P K and Poddar J 1999J. Phys. Chem. A103 1274

  55. 41. (c)

    Chattaraj P K and Poddar J 1999J. Phys. Chem. A103 8691

  56. 41. (d)

    Sengupta D, Chandra A K and Nguyen M T 1997J. Org. Chem. 62 6404

  57. 41. (e)

    Mendez F and Garcia-Gariday M AJ. Org. Chem. 64 7061

  58. 41. (f)

    Oláh J, De Proft F, Veszprémi T and Geerlings P 2004J. Phys. Chem. A108 490

  59. 41. (g)

    Oláh J, Veszprémi T and Nguyen M T 2005Chem. Phys. Lett. 401 337

  60. 42. (a)

    Von Bart U and Hedin L 1972J. Phys. C5 1629

  61. 42. (b)

    Rajagopal A K and Callaway J 1973Phys. Rev. B7 1912

  62. 42. (c)

    Gunnarson O and Lundqvist B I 1976Phys. Rev. B13 4274

  63. 43. (a)

    Galván M, Vela A and Gázquez J L 1988J. Phys. Chem. 92 6470

  64. 43. (b)

    Galván M and Vargas R 1992J. Phys. Chem. 96 1625

  65. 43. (c)

    Vargas R and Galván M 1996J. Phys. Chem. 100 14651

  66. 43. (d)

    Vargas R, Galván M and Vela A 1998J. Phys. Chem. A102 3134

  67. 43. (e)

    Vargas R, Cedillo A, Garza J and Galván M 2002 InReviews of modern quantum chemistry: A celebration to the contributions of R G Parr (ed.) K D Sen (Singapore, World Scientific) p. 936

  68. 44.

    Pérez P, Andrés J, Safont V S, Tapia O and Contreras R 2002J. Phys. Chem. A106 5353

  69. 45.

    De Proft F, Fias S, Van Alsenoy C and Geerlings P 2005J. Phys. Chem. A108 6335

  70. 46. (a)

    Becke A D 1993J. Chem. Phys. 98 5648

  71. 46. (b)

    Lee C, Yang W and Parr R G 1988Phys. Rev. B37 785

  72. 46. (c)

    Stevens P J, Delvin F J, Chablaoski C F and Frisch M J 1994J. Phys. Chem. 98 11623

  73. 47.

    Frisch M Jet al 2004 Gaussian 03 Revision B03, Gaussian Inc., Wallingford, CT

  74. 48.

    For a detailed account on these types of basis sets see e.g. W J Hehre, L Radom, P v R Schleyer and J A Pople 1986Ab initio molecular orbital theory (New York: Wiley)

  75. 49. (a)

    Reed A E, Weinstock R B and Weinhold F 1985J. Chem. Phys. 83 735

  76. 49. (b)

    Reed A E and Weinhold F 1985J. Chem. Phys. 83 1736

  77. 49. (c)

    Reed A E, Curtiss L A and Weinhold F 1988Chem. Rev. 88 899

  78. 50.

    Hirshfeld F L 1977Theor. Chim. Acta 44 129

  79. 51. (a)

    De Proft F, Van Alsenoy C, Peeters A, Langenaeker W and Geerlings P 2002J. Comput. Chem. 23 1198

  80. 51. (b)

    De Proft F, Vivas-Reyes R, Peeters A, Van Alsenoy C and Geerlings P 2003J. Comput. Chem. 24 463

Download references

Author information

Correspondence to P. Geerlings.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pintér, B., De Proft, F., Veszprémi, T. et al. Regioselectivity in the [2 + 2] cyclo-addition reaction of triplet carbonyl compounds to substituted alkenes (Paterno-Büchi reaction): A spin-polarized conceptual DFT approach. J Chem Sci 117, 561–571 (2005) doi:10.1007/BF02708363

Download citation

Keywords

  • Regioselectivity
  • cyclo-addition of triplet carbonyl compounds
  • spin-polarized conceptual DFT approach