Journal of Chemical Sciences

, Volume 117, Issue 5, pp 401–409 | Cite as

A density functional theory-based chemical potential equalisation approach to molecular polarizability

Article

Abstract

The electron density changes in molecular systems in the presence of external electric fields are modeled for simplicity in terms of the induced charges and dipole moments at the individual atomic sites. A chemical potential equalisation scheme is proposed for the calculation of these quantities and hence the dipole polarizability within the framework of density functional theory based linear response theory. The resulting polarizability is expressed in terms of the contributions from individual atoms in the molecule. A few illustrative numerical calculations are shown to predict the molecular polarizabilities in good agreement with available results. The usefulness of the approach to the calculation of intermolecular interaction needed for computer simulation is highlighted.

Keywords

Chemical potential equalisation molecular polarisability density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hohenberg P and Kohn W 1964Phys. Rev. B136 864; Kohn W and Sham L J 1965Phys. Rev. A140 1133CrossRefGoogle Scholar
  2. 2.
    Parr R G and Yang W 1989Density functional theory of atoms and molecules (New York: Oxford University Press)Google Scholar
  3. 3.
    March N H and Deb B M (eds) 1987Single particle density in physics and chemistry (New York: Academic Press)Google Scholar
  4. 4.
    Parr R G and Yang W 1995Annu. Rev. Phys. Chem. 46 701CrossRefGoogle Scholar
  5. 5.
    Parr R G, Donnelly RA, Levy M and Palke WE 1978J. Chem. Phys. 68 3801CrossRefGoogle Scholar
  6. 6.
    Sen K D and Jorgensen C K (eds) 1987Electronegativity: Structure and bonding, vol 66 (Berlin: Springer-Verlag)Google Scholar
  7. 7.
    Parr R G and Pearson R G 1983J. Am. Chem. Soc. 105 7512CrossRefGoogle Scholar
  8. 8.
    Pearson R G 1973Hard and soft acids and bases (Stroudsville, PA: Dowden, Hutchinson and Ross)Google Scholar
  9. 9.
    Sen K D (ed.) 1982Chemical hardness, structure and bonding, vol 80 (Berlin: Springer-Verlag)Google Scholar
  10. 10.
    Fukui K 1982Science 218 747CrossRefGoogle Scholar
  11. 11.
    Parr R G and Yang W 1984J. Am. Chem. Soc. 106 4049CrossRefGoogle Scholar
  12. 12.
    Ghosh S K and Deb B M 1982Chem. Phys. 71 295CrossRefGoogle Scholar
  13. 13.
    Ghanty T K and Ghosh S K 1994J. Am. Chem. Soc. 116 8801CrossRefGoogle Scholar
  14. 14.
    Ghanty T K and Ghosh S K 1994J. Phys. Chem. 98 9197CrossRefGoogle Scholar
  15. 15.
    Vela A and Gazquez J L 1990J. Am. Chem. Soc. 112 1490CrossRefGoogle Scholar
  16. 16.
    Berkowitz M and Parr R G 1988J. Chem. Phys. 88 2554CrossRefGoogle Scholar
  17. 17.
    Ghosh S K and Parr R G 1987Theor. Chem. Acta 72 379CrossRefGoogle Scholar
  18. 18.
    Ghanty T K and Ghosh S K 1991J. Phys. Chem. 95 6512; 1992Inorg. Chem. 31 1951CrossRefGoogle Scholar
  19. 19.
    Ghosh S K 1994Int. J. Quant. Chem. 49 239CrossRefGoogle Scholar
  20. 20.
    Ghanty T K and Ghosh S K 1994J. Am. Chem. Soc. 116 3943CrossRefGoogle Scholar
  21. 21.
    Ghanty T K and Ghosh S K 1994J. Phys. Chem. 98 1840CrossRefGoogle Scholar
  22. 22.
    Mortier W, Ghosh S K and Shankar S 1986J. Am. Chem. Soc. 108 4315CrossRefGoogle Scholar
  23. 23.
    Ghanty TK and Ghosh SK 1992J. Mol. Struct. Theochem. 276 83CrossRefGoogle Scholar
  24. 24.
    Itskowitz P and Berkowitz M 1998J. Phys. Chem. A101 5687; 1998J. Phys. Chem. A102 4808Google Scholar
  25. 25.
    Rappe AK and Goddard III WA 1991J. Phys. Chem. 95 3358CrossRefGoogle Scholar
  26. 26.
    Rick S W, Stuart S J and Berne B J 1994J. Chem. Phys. 101 6141CrossRefGoogle Scholar
  27. 27.
    York D M and Yang W 1996J. Chem. Phys. 104 159CrossRefGoogle Scholar
  28. 28.
    Stern H A, Kaminski G A, Banks J L, Zhou R, Berne B J and Freisner R A 1999J. Phys. Chem. B103 4730; Banks J L, Kaminski G A, Zhou R, Mainz D T, Berne B J and Freisner R A 1999J. Chem. Phys. 110 741; Stern HA, Rittner F, Berne B J and Freisner R A 2001J. Chem. Phys. 115 2237Google Scholar
  29. 29.
    Miller K J 1990J. Am. Chem. Soc. 112 8533, 8543; Miller K J and Savchik J A 1979J. Am. Chem. Soc. 101 7206CrossRefGoogle Scholar
  30. 30.
    No K T, Cho K H, John M S and Scheraga H A 1993J. Am. Chem. Soc. 115 2005CrossRefGoogle Scholar
  31. 31.
    Applequist J 1977Acc. Chem. Res. 10 79; Applequist J, Carl J R and Fung K K 1972J. Am. Chem. Soc. 94 2952CrossRefGoogle Scholar
  32. 32.
    Thole BT 1981Chem. Phys. 59 341; van Duijnen P T and Swart M 1998J. Phys. Chem. 102 2399CrossRefGoogle Scholar
  33. 33.
    Olson ML and Sundberg KR 1978J. Chem. Phys. 69 5400CrossRefGoogle Scholar
  34. 34.
    Applequist J 1985J. Chem. Phys. 83 809; Applequist J 1993J. Phys. Chem. 97 6016; Shanker B and Applequist J 1996J. Phys. Chem. A100 10834; Bode KA and Applequist J 1996J. Phys. Chem. 100 17820; Applequist J 1998J. Phys. Chem. A102 7723CrossRefGoogle Scholar
  35. 35.
    Jensen L, Astrand P O, Sylvester-Hvid K O and Mik-kelsen K V 2000J. Phys. Chem. A104, 1563; Jensen L, Schmidt O H, Mikkelsen K V and Astrand P O 2000J. Phys. Chem. B104 10462Google Scholar
  36. 36.
    Jensen L, Astrand P O and Mikkelsen K V 2001Int. J. Quantum Chem. 84 513CrossRefGoogle Scholar
  37. 37.
    Dinur U 1990J. Phys. Chem. 97 7894; 1994J. Mol. Struct. Theochem. 303 227CrossRefGoogle Scholar
  38. 38.
    Itskowitz P and Berkowitz M 1998J. Chem. Phys. 109 10142CrossRefGoogle Scholar
  39. 39.
    Chelli R, Procacci P, Righini R and Califano S 1999J. Chem. Phys. 111 8569CrossRefGoogle Scholar
  40. 40.
    Stone A J 1985Mol. Phys. 56 1065CrossRefGoogle Scholar
  41. 41.
    Stone AJ 1996The theory of intermolecular forces (Oxford: Clarendon)Google Scholar
  42. 42.
    in het Panhuis M, Popelier P L A, Munn R W and Angyan J G 2001J. Chem. Phys. 114 7951CrossRefGoogle Scholar
  43. 43.
    Berkowitz M, Ghosh S K and Parr R G 1985J. Am. Chem. Soc. 107 6811; Ghosh S K 1990Chem. Phys. Lett. 172 77CrossRefGoogle Scholar
  44. 44.
    Harbola M K, Chattaraj P K and Parr R G 1991Israel J. Chem. 31 395Google Scholar
  45. 45.
    Gazquez J L and Vela A 1988Int. J. Quantum Chem. S22 71CrossRefGoogle Scholar
  46. 46.
    Nalewajski R F, Korchowiec J and Michalak A 1996Top. Curr. Chem. 183 25CrossRefGoogle Scholar
  47. 47.
    Nalewajski R F, Korchowiec J and Zhou Z 1988Int. J. Quantum. Chem. Symp. 22 349CrossRefGoogle Scholar
  48. 48.
    Mataga N and Nishimoto K 1957Z. Phys. Chem. 13 140; Ohno K 1968Theor. Chim. Acta 10 111Google Scholar
  49. 49.
    Ghanty T K and Ghosh S K 1993J. Phys. Chem. 97 4951CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  1. 1.Theoretical Chemistry Section, Chemistry GroupBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations