Journal of Chemical Sciences

, Volume 116, Issue 1, pp 33–38 | Cite as

A study of partial molar volumes of citric acid and tartaric acid in water and binary aqueous mixtures of ethanol at various temperatures

  • M. L. Parmar
  • R. K. Awasthi
  • M. K. Guleria


Partial molar volumes of citric acid and tartaric acid have been determined in water and binary aqueous mixtures of ethanol (5, 10, 15, 20 and 25% by weight of ethanol) at different temperatures and acid concentrations from the solution density measurements. The data have been evaluated by using Masson equation and the obtained parameters have been interpreted in terms of solute-solvent interactions. The partial molar volumes vary with temperature as a power series of temperature. Structure making/breaking capacities of the organic acids have been inferred from the sign of\([\partial ^2 \phi _V^0 /\partial T^2 ]_{p,} \) i.e. second derivative of partial molar volume with respect to temperature at constant pressure. Both the organic acids behave as structure breakers in water and water + ethanol.


Partial molar volumes citric acid tartaric acid water + ethanol mixture structure breaker 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nikam P S, Swant A B, Aher J and Khairner R S 2000J. Indian Chem. Soc. 77 197Google Scholar
  2. 2.
    Banipal T S, Guleria N, Lark B S, Banipal P K and Singh G 2001Indian J. Chem. A40 275Google Scholar
  3. 3.
    Banipal T S, Singh G and Lark B S 2001J. Soln. Chem. 30 657CrossRefGoogle Scholar
  4. 4.
    Banipal T S, Kaur D, Singh G and Lark B S 2002Indian J. Chem. A41 1131Google Scholar
  5. 5.
    Choudhury S R, Dey R, Jha A and Roy M N 2002J. Indian Chem. Soc. 79 623Google Scholar
  6. 6.
    Das S, Ray S K and Hazra D K 2002Indian J. Chem. A41 1812Google Scholar
  7. 7.
    Pal A and Kumar S 2002J Indian Chem. Soc. 79 866Google Scholar
  8. 8.
    Dash U N, Roy G S and Mohanty S 2002Indian J. Chem. A41 2507Google Scholar
  9. 9.
    Ali A, Nain A K, Kumar N and Ibrahim M 2002Proc. Indian Acad. Sci. (Chem. Sci.) 114 495CrossRefGoogle Scholar
  10. 10.
    Parkar A J 1969Chem. Rev. 69 1CrossRefGoogle Scholar
  11. 11.
    Wells D W 1973 InPhysical chemistry of organic solvent systems (eds) A K Convington and T Dichinson (London: Plenum) ch. 6Google Scholar
  12. 12.
    Bladamer M J, Burgess J, Clark B, Duce P P, Hakin A W, Gospal N, Rodulovic S, Guardado P, Sanchez F, Hubrand C D and Abu Gharib E A 1986J. Chem. Soc., Faraday Trans. I 82 1471CrossRefGoogle Scholar
  13. 13.
    Kind E J 1969J. Phys.Chem. 78 1221Google Scholar
  14. 14.
    Timmerman J 1950Physico chemical constants of pure organic compounds (Amsterdam: Elsevier) pp. 307–311Google Scholar
  15. 15.
    Shoemaker D P and Garland C W 1967Experiments in physical chemistry (New York: McGraw Hill) p. 131Google Scholar
  16. 16.
    Ward G K and Millero F J 1974J. Solution Chem. 3 417CrossRefGoogle Scholar
  17. 17.
    Parmar M L and Kundra A 1983Electrochim. Acta 28 1655CrossRefGoogle Scholar
  18. 18.
    Parmar M L and Sharma S 1999J. Indian Chem. Soc. 76 202Google Scholar
  19. 19.
    Parmar M L and Dhiman D K 2001Indian J. Chem. A40 1161Google Scholar
  20. 20.
    Hepler L G, Stokes J M and Stokes R H 1965Trans. Faraday Soc. 61 20CrossRefGoogle Scholar
  21. 21.
    Masson D O 1929Philos. Mag. 8 218Google Scholar
  22. 22.
    Parmar M L and Mahajan S 1984Acta Ciencia Indica 1 31Google Scholar
  23. 23.
    Millero F J 1971Chem. Rev. 71 147CrossRefGoogle Scholar
  24. 24.
    Millero F J 1971 InStructure and transport processes in water and aqueous solutions (ed.) R A Horne (New York: Wiley Interscience) ch 15, p. 622Google Scholar
  25. 25.
    Hepler L G 1969Can.J. Chem. 47 4613CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2004

Authors and Affiliations

  • M. L. Parmar
    • 1
  • R. K. Awasthi
    • 1
  • M. K. Guleria
    • 1
  1. 1.Department of ChemistryHimachal Pradesh UniversityShimlaIndia

Personalised recommendations