Advertisement

Korean Journal of Chemical Engineering

, Volume 18, Issue 1, pp 1–13 | Cite as

Colloid chemical approach to nanotechnology

  • Janos H. FendlerEmail author
Featured Review

Abstract

Colloid chemical methods for the preparation of nanoparticles and their self-assembly and organization into 2-dimensional arrays and three dimensional networks are surveyed. Potential applications of nanoparticles and nanostructured materials, fabricated by the wet colloid chemical approach, are also illustrated.

Key words

Colloids Nanotechnology Nanostructured Materials Self-assembly Nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi, E., “Three-dimensional Self-assembly of Gold Nanocolloids in Spheroids Due to Dialysis in the Presence of Sodium Mercaptoacetate”,Langmuir,16, 6460 (2000).Google Scholar
  2. Addadi, L. and Weiner, S., “Control and Design Principles in Biological Mineralization”,Angewandte Chemie,31, 153 (1991).Google Scholar
  3. Andres, R. P., Bielefeld, J. D., Henderson, J. I., Janes, D. B., Kolagunta, V. R., Kubiak, C. P., Mahoney, W. J. and Osifchin, R. G., “Self-assembly of a Two-dimensional Superlattice of Molecularly Linked Metal Clusters”,Science,273, 1690 (1996).Google Scholar
  4. Armstrong, A. J., Mockler, R. C. and O’Sullivan, W. J., “Isothermalexpansion Melting of Two-dimensional Colloidal Monolayers on the Surface of Water”,Journal of Physics-Condensed Matter,1, 1707 (1989).Google Scholar
  5. Asher, S. A., Holtz, J., Liu, L. and Wu, Z., “Self-assembly Motif for Creating Submicron Periodic Materials. Polymerized Crystalline Colloidal Arrays”,Journal of the American Chemical Society,116, 4997 (1994).Google Scholar
  6. Barbour, K., Ashokkumar, M., Caruso, R. A. and Grieser, F., “Sonochemistry and Sonoluminescence in Aqueous AuCl4-Solutions in the Presence of Surface-active Solutes”,Journal of Physical Chemistry B,103, 9231 (1999).Google Scholar
  7. Bard, A. J. and Mallouk, T., “Electrodes Modified with Clays, Zeolites, and Related Microporous Solids; in Molecular Design of Electrode Surfaces”, R. W. Murray Ed., John Wiley & Sons, New York, 270 (1992).Google Scholar
  8. Bates, F. S. and Fredrickson, G. H., “Block Copolymers — Designer Soft Materials”,Physics Today, 32 (1999).Google Scholar
  9. Baum, T., Bethell, D., Brust, M. and Schiffern, D. I., “Electrochemical Charge Injection into Immobilized Nanosized Gold Particle Ensembles: Potential Modulated Transmission and Reflectance Spectroscopy”,Langmuir,15, 866 (1999).Google Scholar
  10. Benisty, H., Weisbuch, C., Labilloy, D. and Rattier, M., “Photonic Crystals in Two-dimensions Based on Semiconductors: Fabrication, Physics and Technology”,Applied Surface Science,164, 205 (2000).Google Scholar
  11. Boal, A. K., Ilhan, F., DeRouchey, J. E., Thurn-Albrecht, T., Russell, T. P. and Rotello, V. M., “Self-assembly of Nanoparticles into Structured Spherical and Network Aggregates”,Nature,404, 746 (2000).Google Scholar
  12. Breen, T. L., Tien, J., Oliver, S. R. J., Hadzic, T. and Whitesides, G. M., “Design and Self-assembly of Open, Regular, 3D Mesostructures”,Science,284, 948 (1999).Google Scholar
  13. Briesen, H., Fuhrmann, A. and Pratsinis, S. E., “Electrically Assisted Aerosol Reactors using Ring Electrodes”, Briesen, H., Fuhrmann, A., Pratsinis, S.E., Ed., Materials Research Society Proceedings,520, 3 (1998).Google Scholar
  14. Bright, R. M., Musick, M. D. and Natan, M. J., “Preparation and Characterization of Ag Colloid Monolayers”,Langmuir,14, 5695 (1998).Google Scholar
  15. Brinker, C. J., Lu, Y. F., Sellinger, A. and Fan, H. Y., “Evaporation-induced Self-assembly: Nanostructures Made Easy”,Advanced Materials,11, 579 (1999).Google Scholar
  16. Brooks, K. and Gratzel, M., “Self-organization of TiO2 Nanoparticles in Thin Films”,Chemistry of Materials,10, 2419 (1998).Google Scholar
  17. Brune, H., Giovannini, M., Bromann, K. and Kern, K., “Self-organized Growth of Nanostructure Arrays on Strain-relief Patterns”,Nature,394, 451 (1998).Google Scholar
  18. Brust, M., Bethell, D., Kiely, C. J. and Schiffrin, D. J., “Self-assembled Gold Nanoparticle thin Films with Nonmetallic Optical and Electronic Properties”,Langmuir,14, 5425 (1998).Google Scholar
  19. Byrappa, K. and Yoshimura, M., “Handbook of Hydrothermal Technology William Andrews, LCC/Noyes Publications, Park Ridge, NJ (2000).Google Scholar
  20. Cassagneau, T. and Fendler, J. H., “Electron Transfer and Charge Storage in Ultrathin Films Layer-by-Layer Self-assembled from Polyelectrolytes, Nanoparticles and Nanoplatelets”, to be published in Electrochemical Approach to Nanoparticles, G. Hodes, Ed., VCH-Wiley, Weinheim (2001).Google Scholar
  21. Chemseddine, A. and Moritz, T., “Nanostructuring Titania — Control over Nanocrystal Structure, Size, Shape, and Organization”,European Journal of Inorganic Chemistry, 235 (1999).Google Scholar
  22. Chen, Y. Y., Baker, G. L., Ding, Y. Q. and Rabolt, J. F., “Self-assembly through Stepwise Crystallization”,Journal of the American Chemical Society,121, 6962 (1999).Google Scholar
  23. Colfen, H., Schnablegger, H. and Antonietti, M., “Stabilization of Metal Nanoparticles in Aqueous Medium by Polyethyleneoxide-polyethyleneimine Block Copolymers”,Journal of Colloid and Interface Science,212, 197 (1999).Google Scholar
  24. Correa, N. M., Zhang, H. G. and Schelly, Z. A., “Preparation of AgBr Quantum Dots via Electroporation of Vesicles”,Journal of the American Chemical Society,122, 6432 (2000).Google Scholar
  25. Correa-Duarte, M. A., Giersig, M., Kotov, N. A. and Liz-Marzan, L. M., “Control of Packing Order of Self-assembled Monolayers of Magnetite Nanoparticles With and Without SiO2 Coating by Microwave Irradiation”,Langmuir,14, 6430 (1998).Google Scholar
  26. Dabbousi, B. O., Murray, C. B., Rubner, M. F. and Bawendi, M. G., “Langmuir-blodgett Manipulation of Size-selected CdSe Nanocrystallites”,Chemistry of Materials,6, 216 (1994).Google Scholar
  27. Dantsin, G. and Suslick, K. S., “Sonochemical Preparation of a Nano-structured Bifunctional Catalyst”,Journal of the American Chemical Society,122, 5214 (2000).Google Scholar
  28. Decher, G. and Hong, J. D., “Buildup of Ultrathin Multilayer Films by a Self-assembly Process: II. Consecutive Adsorption of Anionic and Cationic Bipolar Amphiphiles and Polyelectrolytes on Charged Surfaces”,Berichte der Bunsen-Gesellschaft für Physikalische Chemie,11, 1430 (1991).Google Scholar
  29. Decher, G., “Layered Nanoarchitectures via Directed Assembly of Anionic and Cationic Molecules; in Comprehensive Supramolecular Chemistry”, Sauvage, J.-P., Ed., Pergamon Press: Oxford,9, 507 (1996).Google Scholar
  30. Dhas, N. A. and Gedanken, A., “A Sonochemical Approach to the Surface Synthesis of Cadmium-sulfide Nanoparticles on Submicron Silica”,Applied Physics Letters,72, 2514 (1998).Google Scholar
  31. Evans, D. F. and Wennerstrom, H., “The Colloid Domain. Where Physics, Chemistry and Technology Meet”, VCH, New York (1994).Google Scholar
  32. Fan, H. Y. and Lopez, G. P., “Adsorption of Surface-modified Colloidal Gold Particles onto Self-assembled Monolayers: A Model System for the Study of Interactions of Colloidal Particles and Organic Surfaces”,Langmuir,13, 119 (1997).Google Scholar
  33. Fendler, J. H., “Membrane Mimetic Approach to Advanced Materials”, Springer-Verlag, Berlin (1992).Google Scholar
  34. Fendler, J. H., “Nanoparticles and Nanostructured Films. Preparation, Characterization and Applications”, Wiley-VCH, Weinheim (1998).Google Scholar
  35. Fendler, J. H., “Membrane Mimetic Chemistry, Characterizations and Applications of Micelles, Microemulsions, Monolayers, Bilayers, Vesicles, Host-Guest Systems and Polyions”, John Wiley, New York (1982).Google Scholar
  36. Fendler, J. H., “Self-assembled Nanostructured Materials”,Chemistry of Materials,8, 1616 (1996).Google Scholar
  37. Fery, A. and Herminghaus, S., “The Formation of Nano-dot and Nanoring Structures in Colloidal Monolayer LithographyLangmuir,13, 7080 (1997).Google Scholar
  38. Fink, J., Kiely, C. J., Bethell, D. and Schiffrin, D. J., “Self-organization of Nanosized Gold Particles”,Chemistry of Materials,10, 922 (1998).Google Scholar
  39. Fischer, M. and Vogtle, F., “Dendrimers: From Design to Application — A Progress Report;Angewandte Chemie-International Edition,38, 885 (1999).Google Scholar
  40. Flagan, R. C., “Nanoparticles and Nanostructures — Aerosol Synthesis and Characterization”, Flagan, R. C., Ed., Kluwer Academic Publ: PO Box 17, 3300 AA Dordrecht, Netherlands, 15 (1998).Google Scholar
  41. Fox, M. A., “Semiconductor Particles Included within Supports”,Research on Chemical Intermediates,15, 153 (1991).CrossRefGoogle Scholar
  42. Frechet, J. M. J., Hawker, C. J., Gitsov, I. and Leon, J. W., “Dendrimers and Hyperbranched Polymers: Two Families of Three-Dimensional Macromolecules with Similar but Clearly Distinct Properties”,Journal of Macromolecular Science-Pure and Applied Chemistry,a33, 1399 (1996).Google Scholar
  43. Furlong, D. N., Urquhart, R., Grieser, F., Tanaka, K. and Okahata, Y., “Size-quantised Cadmium Sulfide Particles in Langmuir-Blodgett Films: Film Thermal Stability”,Journal of the Chemical SocietyFaraday Transactions,89, 2031 (1993).Google Scholar
  44. Gaines, G. L., “Insoluble Monolayers at Liquid-Gas Interfaces”, Interscience, New York (1966).Google Scholar
  45. Gao, M. Y., Peng, X. G. and Shen, J. C., “Polymer Langmuir-Blodgett-Film of Organic-Inorganic (Fe2O3) Composite Microgel”,Thin Solid Films,244, 106 (1994).Google Scholar
  46. Geddes, N. J., Urquhart, R. S., Furlong, D. N., Lawrence, C. R., Tanaka, K. and Okahata, Y., “Growth of CdS Particles in Cadmium Arachidate Films: Monitoring by Surface Plasmon Resonance, UV-Visible Absorption Spectroscopy, and Quartz Crystal Microgravimetry”,Journal of Physical Chemistry B,97, 13767 (1993).Google Scholar
  47. Giroud-Godquin, A.-M. and Maitlis, P. M., “Metallomesogens: Metal Complexes in Organized Fluid Phases”,Angewandte Chemie, International Edition in English,30, 375 (1991).Google Scholar
  48. Gogotsi, Y. G. and Yoshimura, M., “Formation of Carbon-Films on Carbides Under Hydrothermal Conditions”,Nature,367, 628 (1994).Google Scholar
  49. Golan, Y., Alperson, B., Hutchison, J. L., Hodes, G. and Rubinstein, I., “Electrodeposited Quantum Dots: Coherent Nanocrystalline CdSe on Oriented Polycrystalline Au Films”,Advanced Materials,9, 236 (1997).Google Scholar
  50. Gomez, S., Philippot, K., Colliere, V., Chaudret, B., Senocq, F. and Lecante, P., “Gold Nanoparticles from Self-assembled Gold (I) Amine Precursors”,Chemical Communications, 1945 (2000).Google Scholar
  51. Grieser, F., Furlong, D. N., Scoberg, D., Ichinose, I., Kimizuka, N. and Kunitake, T., “Size-quantised Semiconductor Cadmium Chalcogenide Particles in Langmuir-Blodgett Films”,Journal of the Chemical Society-Faraday Transactions,88, 2207 (1992).Google Scholar
  52. Guo, R. and Liu, T. Q., “The Synthesis of PbS Fine Particles in the Triton X-100/C10H21OH/H2O Lamellar Liquid Crystal”,Colloids and Surfaces A Physicochemical and Engineering Aspects,123, 587 (1997).Google Scholar
  53. Halevi, P., Krokhin, A. A. and Arriaga, J., “Photonic Crystals as Optical Components”,Applied Physics Letters,75, 2725 (1999).Google Scholar
  54. Hayes, W. A. and Shannon, C., “Nanometer-scale Patterning of Surfaces using Self-assembly Chemistry. 3. Template-directed Growth of Polymer Nanostructures on Organothiol Self-assembled Mixed Monolayers”,Langmuir,14, 1099 (1998).Google Scholar
  55. Henglein, A. and Meisel, D., “Spectrophotometric Observations of the Adsorption of Organosulfur Compounds on Colloidal Silver Nanoparticles”,Journal of Physical Chemistry B,102, 8364 (1998).Google Scholar
  56. Higgins, A. M. and Jones, R. A. L., “Anisotropic Spinodal Dewetting as a Route to Self-assembly of Patterned Surfaces”,Nature,404, 476 (2000).Google Scholar
  57. Hodes, G., Golan, Y., Behar, D., Zhang, Y., Alperson, B. and Rubinstein, I., “Electrodeposited Quantum Dots: Size Control by Semiconductor-Substrate Lattice Mismatch; in Nanoparticles and Nanostructured Films”, Fendler, J. H. Ed., Wiley-VCH: Weinheim, Germany, 1 (1998).Google Scholar
  58. Holtz, J. H., Holtz, J. S. W., Munro, C. H. and Asher, S. A., “Intelligent Polymerized Crystalline Colloidal Arrays — Novel Chemical Sensor Materials”,Analytical Chemistry,70, 780 (1998).Google Scholar
  59. Horvolgyi, Z., Nemeth, S. and Fendler, J. H., “Spreading of Hydrophobic Silica Beads at Water Air Interfaces”,Colloids and Surfaces A-Physicochemical and Engineering Aspects,71, 327 (1993).Google Scholar
  60. http://www.nano.gov, “National Nanotechnology Initiative: The Initiative and its Implementation Plan”, pulled 10–31 (2000).Google Scholar
  61. Her, R. K., “Multilayers of Colloidal Particles”,Journal of Colloid and Interface Science,21, 569 (1966).Google Scholar
  62. Israelachvili, J. N., “Intermolecular Surface Forces”, 2nd ed, Academic Press, San Diego (1992).Google Scholar
  63. Jang, H. D. and Friedlander, S. K., “Restructuring of Chain Aggregates of Titania Nanoparticles in the Gas-Phase”,Aerosol Science and Technology,29, 81 (1998).Google Scholar
  64. Kamat, P. V. and Vinodgopal, K., “Sonochromic Effect in WO3 Colloidal Suspensions”,Langmuir,12, 5739 (1996).Google Scholar
  65. Kane, R. S., Cohen, R. E. and Silbey, R., “Synthesis of Doped ZnS Nanoclusters within Block Copolymer Nanoreactors”,Chemistry of Materials,11, 90 (1999).Google Scholar
  66. Keller, S. W., Kim, H. N. and Mallouk, T. E., “Layer-by-Layer Assembly of Intercalation Compounds and Heterostructures on Surfaces —Toward Molecular Beaker Epitaxy”,Journal of the American Chemical Society,116, 8817 (1994).Google Scholar
  67. Kho, R., Torres-Martinez, C. L. and Mehra, R. K., “A Simple Colloidal Synthesis for Gram-quantity Production of Watersoluble ZnS Nannocrystal Powders”,Journal of Colloid and Interface Science,227, 561 (2000).Google Scholar
  68. Kiely, C. J., Fink, J., Brust, M., Bethell, D. and Schiffrin, D. J., “Spontaneous Ordering of Bimodal Ensembles of Nanoscopic Gold Clusters”,Nature,396, 444 (1998).Google Scholar
  69. Kim, B. S., Avila, L., Brus, L. E. and Herman, I. P., “Organic Ligand and Solvent Kinetics During the Assembly of CdSe Nanocrystal Arrays using Infrared Attenuated Total Reflection”,Applied Physics Letters,76, 3715 (2000).Google Scholar
  70. Kim, K. Y. and Park, S. B., “Preparation of Nanosize SnO2 Particles in an Aerosol Reactor by Pyrolysis of Tetra-n-butyl Tin”,Journal of Materials Science,34, 5783 (1999).Google Scholar
  71. Kotov, N. A., Meldrum, F. C., Fendler, J. H., Tombacz, E. and Dekany, I., “Spreading of Clay Organocomplexes on Aqueous-solutions — Construction of Langmuir-blodgett Clay Organocomplex Multilayer Films”,Langmuir,10, 3797 (1994).Google Scholar
  72. Kotov, N. A., Zaniquelli, E. D., Meldrum, F. C. and Fendler, J. H., “Two-dimensional Silver Electrocrystallization Under Monolayers Spread on Aqueosu Silver Nitrate”,Langmuir,9, 3710 (1993).Google Scholar
  73. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S., “Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism”,Nature,359, 710 (1992).Google Scholar
  74. Kruis, F. E., Nielsch, K., Fissan, H., Rellinghaus, B. and Wassermann, E. F., “Preparation of Size-classified PbS Nanoparticles in the Gasphase”,Applied Physics Letters,73, 547 (1998).Google Scholar
  75. Kumar, R. V., Diamant, Y. and Gedanken, A., “Sonochemical Synthesis and Characterization of Nanometer-size Transition Metal Oxides from Metal Acetates”,Chemistry of Materials,12, 2301 (2000).Google Scholar
  76. Leclere, P., Parente, V., Bredas, J. L., Francois, B. and Lazzaroni, R., “Organized Semiconducting Nanostructures from Conjugated Block Copolymer Self-assembly”,Chemistry of Materials,10, 4010 (1998).Google Scholar
  77. Lee, H., Kepley, L. J., Hong, H.-G. and Mallouk, T. E., “Inorganic Analogues of Langmuir-blodgett Films: Adsorption of Ordered Zirconium 1,10-decanebisphosphonate Multilayers on Silicon Surfaces”,Journal of the American Chemical Society,110, 618 (1988).Google Scholar
  78. Lencka, M. M., Oledzka, M. and Riman, R. E., “Hydrothermal Synthesis of Sodium and Potassium Bismuth Titanates”,Chemistry of Materials,12, 1323 (2000).Google Scholar
  79. Liu, J. Z., “Controlled Growth of the Ordered Cadmium Sulfide Particulate Films and the Photoacoustics Investigation”,Journal of Physical Chemistry B,101, 9703 (1997).Google Scholar
  80. Luo, X. Z., Zhang, Z. Q., Liang, Y. Q., “Structure of Cobalt Stearate and Cobalt Sulfide Stearic-acid Langmuir-Blodgett-Films”,Langmuir,10, 3213 (1994).Google Scholar
  81. Lvov, Y., Haas, H., Decher, G., Mohwald, H. and Kalachev, A., “Assembly of Polyelectrolyte Molecular Films onto Plasma-treated Glass”,Journal of Physical Chemistry B,97, 12835 (1993).Google Scholar
  82. Mahamuni, S., Borgohain, K., Bendre, B. S., Leppert, V. J. and Risbud, S. H., “Spectroscopic and Structural Characterization of Electrochemically Grown ZnO Quantum Dots”,Journal of Applied Physics,85, 2861 (1999).Google Scholar
  83. Mallouk, T. E., Kim, H.-N., Offivier, P. J. and Keller, S. W., “Ultrathin Films based on Layered Inorganic Solids; in Comprehensive Supramolecular Chemistry, Vol VII: Solid State Supramolecular Chemistry: Two- and Three-Dimensional Inorganic Networks, part I. Layered Solids and Their Intercalation Chemistry”, Alberti, G.; Bein, T., Pergamon Press, Oxford, 189 (1996).Google Scholar
  84. Mann, S., “Biomimetic Materials Chemistry”, VCH, New York (1996).Google Scholar
  85. Markovich, G., Collier, P., Henrichs, S. E., Remacle, F., Levine, R. D. and Heath, J. R., “Architectonic Quantum Dot Solids”,Acc. Chem. Res.,32, 415 (1999).Google Scholar
  86. Mastai, Y., Polsky, R., Koltypin, Y., Gedanken, A. and Hodes, G., “Pulsed Sonoelectrochemical Synthesis of Cadmium Selenide Nanoparticles”,Journal of the American Chemical Society,121, 10047 (1999).Google Scholar
  87. Matijevic, E., “Uniform Inorganic Colloid Dispersions. Achievements and Challenges”,Langmuir,10, 8 (1994).Google Scholar
  88. Mdleleni, M. M., Hyeon, T. and Suslick, K. S., “Sonochemical Synthesis of Nanostructured Molybdenum Sulfide”,Journal of the American Chemical Society,120, 6189 (1998).Google Scholar
  89. Meldrum, F. C. and Fendler, J. H., “Construction of Organized Particulate Films by the Langmuir-Blodgett Technique”, in “Biomimetic Approaches in Materials Chemistry”, (Mann, S. E., Ed.) VC H, Weinheim, 175–219 (1996).Google Scholar
  90. Meldrum, F. C., Flath, J. and Knoll, W., “Chemical Deposition of PbS on Self-assembled Monolayers of 16-Mercaptohexadecanoic Acid”,Langmuir,13, 2033 (1997).Google Scholar
  91. Moriguichi, I., Hosoi, K., Nagaoka, H., Tanaka, I., Teraoka, Y. and Kagawa, S., “Stepwise Growth of Size-confined CdS in the Two-dimensional Hydrophilic Interlayers of Langmuir-Blodgett Films by the Repeated Sulfidation-intercalation Technique”,Journal of the Chemical Society-Faraday Transactions,90, 349 (1994).Google Scholar
  92. Nardin, C., Thoeni, S., Widmer, J., Winterhalter, M. and Meier, W., “Nanoreactors Based on (Polymerized) ABA-triBlock Copolymer Vesicles”,Chemical Communications, 1433 (2000). Okitsu, K., Bandow, H., Maeda, Y. and Nagata, Y., “Sonochemical Preparation of Ultrafine Palladium Particles”,Chemistry of Materials,8, 315 (1996).Google Scholar
  93. Okitsu, K., Yue, A., Tanabe, S. and Matsumoto, H., “Sonochemical Preparation and Catalytic Behavior of Highly Dispersed Palladium Nanoparticles on Alumina”,Chemistry of Materials,12, 3006 (2000).Google Scholar
  94. Ozin, G. A., “Nanochemistry: Synthesis in Diminishing Dimensions”,Advanced Materials,4, 612 (1992).Google Scholar
  95. Pan, G. S., Kesavamoorthy, R. and Asher, S. A., “Optically Nonlinear Bragg Diffracting Nanosecond Optical Switches”,Phys. Rev. Lett.,78, 3860 (1997).Google Scholar
  96. Pan, Z. Y., Shen, G. J., Zhang, L. G., Lu, Z. H. and Liu, J. Z., “Preparation of Oriented Cadmium-Sulfide Nanocrystals”,J. Mater. Chem.,7, 531(1997).Google Scholar
  97. Park, S. H. and Xia, Y. N., “Assembly of Mesoscale Particles over Large Areas and its Application in Fabricating Tunable Optical Filters”,Langmuir,15, 266 (1999). Peng, J. B. and Barnes, G. T., “The 2-Dimensional Hexatic-B Phase of Single Langmuir-Blodgett Monolayers Observed by Atomic-force Microscopy Thin Solid Films,252, 44 (1994).Google Scholar
  98. Peng, X., Zhang, Y., Yang, J., Zou, B., Xiao, L. and Li, T., “Formation of Nanoparticulate Fe-2O-3-stearate Multilayer through the Langmuir-blodgett Method”,Journal of Physical Chemistry B,96, 3412 (1992).Google Scholar
  99. Peters, D., “Ultrasound in Materials Chemistry”,Journal of Materials Chemistry,6, 1605 (1996).Google Scholar
  100. Phillips, R. J., Golden, T. D., Shumsky, M. G., Bohannan, E. W. and Switzer, J. A., “Electrodeposition of Textured Ceramic Superlattices in the Pb-Tl-O System”,Chemistry of Materials,9, 1670 (1997).Google Scholar
  101. Pieranski, P., “Two-dimensional Interfacial Colloidal Crystals”,Physical Review Letters,45, 569 (1980).Google Scholar
  102. Pike, J. K., Byrd, H., Morrone, A. A. and Talham, D. R., “Oriented Cadmium Dihalide Particles Prepared in Langmuir-Blodgett-films”,Chemistry of Materials,6, 1757 (1994).Google Scholar
  103. Pileni, M. P., “Nanosized Particles Made in Colloidal Assemblies”,Langmuir,13, 3266 (1997).Google Scholar
  104. Ponomarev, E. A., Albu-Yaron, A., Tenne, R. and Levy-Clement, C., “Electrochemical Deposition of Quantized Particle MoS2 thin Films”,Journal of the Electrochemical Society,144 (1997).Google Scholar
  105. Potter, D. I., “Particle Size Control and Self-assembly Processes in Novel Colloids of Nanocrystalline Manganese Oxide”,Journal of Physical Chemistry B,103, 7416 (1999).Google Scholar
  106. Powell, Q. H., Fotou, G. P., Kodas, T. T., Anderson, B. M. and Guo, Y. X., “Gas-phase Coating of TiO2 with SiO2 in a Continuous Flow Hot-wall Aerosol Reactor”,Journal of Materials Research,12, 552 (1997).Google Scholar
  107. Pratsinis, S. E., “Flame Aerosol Synthesis of Ceramic Powders”,Progress in Energy and Combustion Science,24, 197 (1998).Google Scholar
  108. Prozorov, R. and Gedanken, A., “Encapsulation of Nickel Nanoparticles in Carbon Obtained by the Sonochemical Decomposition of Ni(C8H12)(2)”,Chemistry of Materials,11, 1331 (1999).Google Scholar
  109. Rajh, T., Thurnauer, M. C., Thiyagarajan, P. and Tiede, D. M., “Structural Characterization of Self-organized TiO2 Nanoclusters Studied by Small Angle Neutron Scattering”,Journal of Physical Chemistry B,103, 2172 (1999).Google Scholar
  110. Robinson, D. J. and Earnshaw, J. C., “Initiation of Aggregation in Colloidal Particle Monolayers”,Langmuir,9, 1436 (1993).Google Scholar
  111. Rudoy, V. M., Yaminskii, I. V., Dement’eva, O. V. and Ogarev, V. A., “Formation of Ordered Structures from Metal Nanoparticles in the Surface Layer of Glassy Polymer”,Colloid Journal,61, 800 (1999).Google Scholar
  112. Sagiv, J., “Organized Monolayers by Adsorption. 1. Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces”,Journal of the American Chemical Society,102, 92 (1980).Google Scholar
  113. Sato, T., Brown, D. and Johnson, B. F. G., “Nucleation and Growth of Nano-gold Colloidal Lattices”,Chemical Communications, 1007 (1997).Google Scholar
  114. Satoh, N. and Kimura, K., “Metal Colloids Produced by Means of Gas Evaporation Technique. V. Colloidal Dispersion of Au Fine Particles to Hexane, Poor Dispersion Medium for Metal Sol”,Bulletin of the Chemical Society of Japan,62, 1758 (1989).Google Scholar
  115. Sawai, S., Tanaka, H., Morimoto, K., Hisano, K. and Yamamoto, T., “Simultaneous Measurements of Specific Heat Capacity and Dielectric Constant of Ferroelectric Ba1-xSrxTiO3”,Ferroelectrics,242, 59 (2000).Google Scholar
  116. Schrock, R. R., Thomas, E. L., Rubner, M. F. and Bawendi, M. G., “Composite thin Films of CdSe Nanocrystals and a Surface Passivating/Electron Transporting Block Copolymer: Correlations Between Film Microstructure by Transmission Electron Microscopy and Electroluminescence”,Journal of Applied Physics,86, 4390 (1999).Google Scholar
  117. Schulz, W, “Crafting a National Nanotechnology Effort” C& EN News, p. 39, October 16 (2000).Google Scholar
  118. Selvan, S. T., Hayakawa, T., Nogami, M. and Moller, M., “Block Copolymer Mediated Synthesis of Gold Quantum Dots and Novel Gold-polypyrrole Nanocomposites”,Journal of Physical Chemistry B,103, 7441 (1999).Google Scholar
  119. Shafi, K. V. P. M. and Gedanken, A., “Sonochemical Approach to the Preparation of Barium Hexaferrite Nanoparticles”,Nanostructured Materials,12, 29 (1999).Google Scholar
  120. Shen, Y. Z., Friend, C. S., Jiang, Y., Jakubczyk, D., Swiatkiewicz, J. and Prasad, P. N., “Nanophotonics: Interactions, Materials, and Applications”,Journal of Physical Chemistry B,104, 7577 (2000).Google Scholar
  121. Smotkin, E. S., Lee, C., Bard, A. J., Campion, A., Fox, M. A., Mallouk, T. E., Webber, S. E. and White, J. M., “Size Quantization Effects in Cadmium Sulfide Layers formed by a Langmuir-blodgett Technique”,Chemical Physics Letters,152, 265 (1988).Google Scholar
  122. Sooklal, K., Hanus, L. H., Ploehn, H. J. and Murphy, C. J., “A Blueemitting CdS/Dendrimer Nanocomposite”,Advanced Materials,10, 1083 (1998).Google Scholar
  123. Spatz, J. P., Mossmer, S. and Moller, M., “Mineralization of Gold Nanoparticles in a Block-copolymer Microemulsion”,Chemistry-A European Journal,2, 1552 (1996).Google Scholar
  124. Steigerwald, M. L., Alivisatos, A. P., Gibson, J. M., Harris, T. D., Kortan, R., Muller, A. J., Thayer, A. M., Duncan, T. M., Douglass, D. C. and Brus, L. E., “Surface Derivatization and Isolation of Semiconductor Cluster Molecules”,Journal of the American Chemical Society,110, 3046 (1988).Google Scholar
  125. Stupp, S. I., “Self-assembly of Rodcoil Molecules”,Current Opinion in Colloid & Interface Science,3, 20 (1998).CrossRefGoogle Scholar
  126. Su, B. and Choy, K. L., “Synthesis, Microstructure and Optical Properties of ZnS Films formed by Electrostatic Assisted Aerosol Jet Deposition”Journal of Materials Chemistry,10, 949 (2000).Google Scholar
  127. Suslick, K. S., Fang, M. M. and Hyeon, T., “Sonochemical Synthesis of Iron Colloids”Journal of the American Chemical Society,118, 11960 (1996).Google Scholar
  128. Suslick, K. S., Hyeon, T. W. and Fang, M. M., “Nanostructured Materials Generated by High-intensity Ultrasound: Sonochemical Synthesis and Catalytic Studies”,Chemistry of Materials,8, 2172 (1996).Google Scholar
  129. Switzer, J. A., “Electrodeposition of Superlattices and nanocomposites; in Nanoparticles and Nanostructured Films”, Fendler, J. H. Ed., Wiley-VCH: Weinheim, Germany, 53 (1998).Google Scholar
  130. Tian, Y. C., Wu, C. J. and Fendler, J. H., “Fluorescence Activation and Surface-State Reactions of Size-Quantized Cadmium-Sulfide Particles in Langmuir-Blodgett-Films”,Journal of Physical Chemistry B,98, 4913 (1994).Google Scholar
  131. Tohver, V., Braun, P. V., Pralle, M. U. and Stupp, S. I., “Counterion Effects in Liquid Crystal. Templating of Nanostructured CdS”,Chemistry of Materials,9, 1495 (1997).Google Scholar
  132. Tomalia, D. A., Naylor, A. M. and Goddard III, W. A., “Starburst Dendrimers: Molecular-level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter”,Angewandte Chemie, International Edition in English,29, 138 (1990).Google Scholar
  133. Turkevich, J., Stevenson, P. C. and Hillier, J., “A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold”,Discussion of the Faraday Society, 55 (1951).Google Scholar
  134. Urquhart, R. S., Furlong, D. N., Mansur, H., Grieser, F., Tanaka, K. and Okahata, Y., “Quartz-crystal Microbalance and UV-VLS Adsorption Study of Q-state CdS Particle Formation in Cadmium Arachidate Langmuir-Blodgett-Films”Langmuir,10, 899 (1994).Google Scholar
  135. Vallet-Regi, M., Nicolopoulos, S., Roman, J., Martinez, J. L. and Gonzalez-Calbet, J. M., “Structural Characterization of ZrO2 Nanoparticles Obtained by Aerosol Pyrolysis”,Journal of Materials Chemistry,7, 1017 (1997).Google Scholar
  136. Valletregi, M., Nicolopoulos, S., Roman, J., Martinez, J. L. and Gonzalezcalbet, J. M., “Structural Characterization of ZrO2 Nanoparticles Obtained by Aerosol Pyrolysis”,Journal of Materials Chemistry,7, 1017 (1997).Google Scholar
  137. Veinot, J. G. C., Ginzburg, M. and Pietro, W. J., “Surface Functionalization of Cadmium Sulfide Quantum-confined Nanoclusters. 3. Formation and Derivatives of a Surface Phenolic Quantum Dot;Chemistry of Materials,9, 2117 (1997).Google Scholar
  138. Vlasov, Y. A., Deutsch, M. and Norris, D. J., “Single-domain Spectroscopy of Self-assembled Photonic Crystals”,Applied Physics Letters,76, 1627 (2000).Google Scholar
  139. Wang, D., Bai, Y. B., Li, T. J. and Tang, X. Y., “Size Control of CdS Nanocrystals in Block Copolymer Micelle”,Chemistry of Materials,11, 392 (1999).Google Scholar
  140. Wei, Q. H., Cupid, D. M. and Wu, X. L., “Controlled Assembly of Two-dimensional Colloidal Crystals”,Applied Physics Letters,77, 1641 (2000).Google Scholar
  141. Weiner, S. and Addadi, L., “Design Strategies in Mineralized Biological Materials”,Journal of Materials Chemistry,7, 689 (1997).Google Scholar
  142. Weller, H., “Quantized Semiconductor Particles: A Novel State of Matter for Materials Science”,Advanced Materials,5, 88 (1993).Google Scholar
  143. Xia, Y. N. and Whitesides, G. M., “Soft lithography”,Annual Review of Materials Science,28, 153 (1998).Google Scholar
  144. Xia, Y. N., Rogers, J. A., Paul, K. E. and Whitesides, G. M., “Unconventional Methods for Fabricating and Patterning Nanostructures”Chemical Reviews,99, 1823 (1999).Google Scholar
  145. Xu, D. S., Xu, Y. J., Chen, D. P., Guo, G. L., Gui, L. L. and Tang, Y. Q., “Preparation of CdS Single-crystal Nanowires by Electrochemically Induced Deposition”,Advanced Materials,12, 520 (2000).Google Scholar
  146. Xu, S., Zhao, X. K. and Fendler, J. H., “Ultrasmall Semiconductor Particles Sandwiched Between Surfactant Headgroups in Langmuir-Blodgett Films”,Advanced Materials,2, 183 (1990).Google Scholar
  147. Yang, J. P. and Fendler, J. H., “Morphology Control of PbS Nanocrystallites, Epitaxially Under Mixed Monolayers”,Journal of Physical Chemistry B,99, 5505 (1995).Google Scholar
  148. Yang, J. P., Meldrum, F. C. and Fendler, J. H., “Epitaxial-Growth of Size-quantized Cadmium-sulfide Crystals Under Arachidic Acid Monolayers”,Journal of Physical Chemistry B,99, 5500 (1995).Google Scholar
  149. Yang, J., Fendler, J. H., Jao, T. C. and Laurion, T., “Electron and Atomic-Force Microscopic Investigations of Lead Selenide Crystals Grown Under Monolayers”,Microscopy Research and Technique,27, 402 (1994).Google Scholar
  150. Yi, K. C., Horvolgyi, Z. and Fendler, J. H., “Chemical Formation of Silver Particulate Films Under Monolayers”Journal of Physical Chemistry B,98, 3872 (1994).Google Scholar
  151. Yin, J. S. and Wang, Z. L., “Preparation of Self-assembled Cobalt Nanocrystal Arrays”,Nanostructured Materials,11, 845 (1999).Google Scholar
  152. Yoshimura, M. and Livage, J., “Soft Solution Processing for Advanced Materials”,MRS Bulletin,25, 12 (2000).Google Scholar
  153. Yoshimura, M., Suchanek, W. L. and Byrappa, K., “Soft Solution Processing: A Strategy for One-Step Processing of Advanced Inorganic Materials”,MRS Bulletin,25, 17 (2000).Google Scholar
  154. Yoshimura, M., Suchanek, W. and Han, K. S., “Recent Developments in Soft, Solution Processing: One Step Fabrication of Functional Double Oxide Films by Hydrothermal-Electrochemical Methods”,Journal of Materials Chemistry,9, 77 (1999).Google Scholar
  155. Zhao, X. K., McCormick, L. D. and Fendler, J. H., “Preparation-dependent Rectification Behavior of Lead Sulfide Particulate Films”,Advanced Materials,4, 93 (1992).Google Scholar
  156. Zhao, X. K., Yang, J., McCormick, L. D. and Fendler, J. H., “Epitaxial Formation of PbS Crystals Under Arachidic Acid Monolayers”,Journal of Physical Chemistry B,96, 9933 (1992).Google Scholar
  157. Zhao, X. Z., Roy, R., Cherian, K. A. and Badzian, A., “Hydrothermal Growth of Diamond in Metal-C-H2O Systems”,Nature,385, 513 (1997).Google Scholar
  158. Zhu, J. J., Koltypin, Y. and Gedanken, A., “General Sonochemical Method far the Preparation of Nanophasic Selenides: Synthesis of ZnSe Nanoparticles”,Chemistry of Materials,12, 73 (2000).Google Scholar

Copyright information

© Korean Institute of Chemical Engineering 2001

Authors and Affiliations

  1. 1.Center for Advanced Materials ProcessingClarkson UniversityPotsdamUSA

Personalised recommendations