Advertisement

Korean Journal of Chemical Engineering

, Volume 20, Issue 4, pp 736–744 | Cite as

Closure equations in the estimation of binary interaction parameters

  • Syed Akhlaq Ahmad
  • Ashok KhannaEmail author
Article

Abstract

Binary interaction parameters used in the UNIQUAC activity coefficient model are found to be dependent on each other and related by a linear relation termed as the closure equation. For a ternary system, six binary interaction parameters are related by one closure equation. Similarly for quaternary systems, three independent closure equations are obtained for the twelve binary interaction parameters and for quinary systems there are six closure equations for twenty parameters. Each closure equation consists of six parameters. The binary interaction parameters that do not satisfy the closure equations may lead to a less accurate prediction of liquid-liquid equilibria. In this work the binary interaction parameters have been estimated with and without closure equations for few ternary and quaternary systems. Parameters that satisfy the closure equations exhibit better root mean square deviation than those that do not satisfy the closure equations in most of the cases. A similar behavior is observed for NRTL model also.

Key words

Closure Equation Binary Interaction Parameters Energy Interaction Term Liquid-Liquid Equilibria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bottini, S. B., “Liquid-Liquid Equilibria for the System Toluene-Isooctane-Diethylene Glycol Methyl Ether”,J. Chem. Eng. Data,31, 84 (1986).CrossRefGoogle Scholar
  2. Cassell, G. W., Dural, N. and Hines, A. L., “Liquid-Liquid Equilibrium of Sulfolane-Benzene-Pentane and Sulfolane-Toluene-Pentane”,Ind. Eng. Chem. Res.,28, 1369 (1989a).CrossRefGoogle Scholar
  3. Cassell, G. W., Hassan, M. M. and Hines, A. L., “Correlation of the Phase Equilibrium Data for the Heptane-Toluene-Sulf olane and Heptane-Xylene-Sulfolane Systems”,J. Chem. Eng. Data,34, 434 (1989b).CrossRefGoogle Scholar
  4. Cassell, G. W., Hassan, M. M. and Hines, A. L., “Lquid-Liqid Equilibria for the Hexane-Benzene-Dimethyl Sulfoxide Ternary System”J. Chem. Eng. Data,34, 328 (1989c).CrossRefGoogle Scholar
  5. Chen, J., Duan, L., Mi, I., Fei, W. and Li, Z., “Liquid-Liquid Equilibria of Multi-component Systems Including n-Hexane, n-Octane, Benzene, Toluene, Xylene and Sulfolane at 298.15 K and Atmospheric Pressure”,Fluid Phase Equilibria,173, 109 (2000a).CrossRefGoogle Scholar
  6. Chen, J., Li, Z. and Duan, L., “Liquid-Liquid Equilibria of Ternary and Quaternary Systems Including Cyclohexane, 1-Heptene, Benzene, and Sulfolane at 298.15 K”,J. Chem. Eng. Data,45, 689 (2000b).CrossRefGoogle Scholar
  7. Chen, J., Mi, J., Fei, W. and Li, Z., “Liquid-liquid Equilibria of Quaternary and Quinary Systems Including Sulfolane at 298.15K”,J. Chem. Eng. Data,46, 169 (2001).CrossRefGoogle Scholar
  8. Esposito, W. R. and Floudas, C. A., “Global Optimization in Parameter Estimation of Nonlinear Algebraic Models via the Error-in-Variable Approach”,Ind. Eng. Chem. Res. Dev.,37, 1841 (1998).CrossRefGoogle Scholar
  9. Ferreira, P. O., Ferreira, J. B. and Medina, A. G., “Liquid-Liquid Equilibria for the System N-Methylpyrrolidone+Toluene+n-Heptane: UNIFAC Interaction Parameters for N-Methylpyrrolidone”,Fluid Phase Equilibria,16, 369 (1984).CrossRefGoogle Scholar
  10. Hala, E., “Note to Bruin-Prausnitz One-Parameter and Palmer-Smith Two-Parameter Local Composition Equation”,Ind. Eng. Chem. ProcessDes. Dev.,11, 638 (1972).CrossRefGoogle Scholar
  11. Lee, S. and Kim, H., “Liquid-Liquid Equilibria for the Ternary Systems Sulfolane+Octane+Benzene, Sulfolane+Octane+Toluene, and Sulfolane+Octane+p-Xylene”,J. Chem. Eng. Data,40, 499 (1995).CrossRefGoogle Scholar
  12. Lee, S. and Kim, H., “Liquid-Liquid Equilibria for the Ternary Systems Sulfolane+Octane+Benzene, Sulfolane+Octane+Toluene, and Sulfolane+Octane+p-Xylene at Elevated Temperatures”,J. Chem. Eng. Data,43, 358 (1998).CrossRefGoogle Scholar
  13. Letcher, T. M. and Naicker, P. K., “Liquid-Liquid Equilibria for Mixtures of an Alkane+an Aromatic Hydrocarbon+1,4-Dicyanobutane at 298.15 K”,J. Chem. Eng. Data,45, 104 (2000).CrossRefGoogle Scholar
  14. Letcher, T. M., Redhi, G. G., Radloff, S. E. and Domanska, U., “Liquid-Liquid Equilibria for the Ternary Mixtures with Sulfolane at 303.15 K”,J. Chem. Eng. Data,41, 634 (1996).CrossRefGoogle Scholar
  15. Prausnitz, J. M., Anderson, T. F., Grens, G. A., Eckert, C. A., Hsieh, R. and O’Connel, J. P., “Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria”, Prentice Hall Inc. Englewood Cliffs, New Jersey (1980).Google Scholar
  16. Salem, A. B. S. H., Hamad, E. Z. and Al-Naafa, M. A., “Quaternary Liquid-Liquid Equilibrium of n-Heptane-Toluene-o-Xylene-Propylene Carbonate”,Ind. Eng. Chem. Res.,33, 689 (1994).CrossRefGoogle Scholar
  17. Sorensen, J. M. and Arlt, W., “Liquid-Liquid Equilibrium Data Collection: Ternary Systems”, DECHEMA Chemistry Data Series, V, Part 2, Frankfurt am Main (1979a).Google Scholar
  18. Sorensen, J. M. and Arlt, W., “Liquid-Liquid Equilibrium Data Collection: Ternary Systems”, DECHEMA Chemistry Data Series, V, Part 3, Frankfurt am Main (1979b).Google Scholar
  19. Varheygi, G. and Eon, C. H., “Correlation of the Free Energy Equation Parameters from Ternary Liquid-Liquid Equilibrium Data”,Ind. Eng. Chem. Fundam.,16, 182 (1977).CrossRefGoogle Scholar
  20. Vasquez, V. R. and Whiting, W. B., “Regression of Binary Interaction Parameters for Thermodynamic Models using an Inside-variance Estimation method (TVEM)”,Fluid Phase Equilibria,170, 235 (2000).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineering 2003

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations