Korean Journal of Chemical Engineering

, Volume 23, Issue 4, pp 678–682 | Cite as

Fabrication of high aspect ratio nanostructures using capillary force lithography

  • Kahp Yang Suh
  • Hoon Eui Jeong
  • Jee Won Park
  • Sung Hoon Lee
  • Jae Kwan Kim
Article

Abstract

A new ultraviolet (UV) curable mold consisting of functionalized polyurethane with acrylate group (MINS101m, Minuta Tech.) has recently been introduced as an alternative to replace polydimethylsiloxane (PDMS) mold for sub-100-nm lithography. Here, we demonstrate that this mold allows for fabrication of various high aspect ratio nanostructures with an aspect ratio as high as 4.4 for 80 nm nanopillars. For the patterning method, we used capillary force lithography (CFL) involving direct placement of a polyurethane acrylate mold onto a spin-coated polymer film followed by raising the temperature above the glass transition temperature of the polymer (Tg). For the patterning materials, thermoplastic resins such as polystyrene (PS) and poly(methyl methacrylate) (PMMA) and a zinc oxide (ZnO) precursor were used. For the polymer, micro/nanoscale hierarchical structures were fabricated by using sequential application of the same method, which is potentially useful for mimicking functional surfaces such as lotus leaf.

Key words

Capillary Force Lithography Nanostructures Aspect Ratio Laplace Pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, P., “Engineering — Shark skin and other solutions,”Nature,400, 507 (1999).CrossRefGoogle Scholar
  2. Bietsch, A. and Michel, B., “Conformal contact and pattern stability of stamps used for soft lithography,”J. Appl. Phys.,88, 4310 (2000).CrossRefGoogle Scholar
  3. Brandup, J. and Immergut, E. H.,Polymer Handbook, Wiley, New York (1989).Google Scholar
  4. Cheng, J.Y., Ross, C.A., Chan, V. Z.H., Thomas, E. L., Lammertink, R.G. H. and Vancso, G. J., “Formation of a cobalt magnetic dot array via block copolymer lithography,”Adv. Mater.,13, 1174 (2001).CrossRefGoogle Scholar
  5. Choi, K.M. and Rogers, J. A., “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,”J. Am. Chem. Soc.,125, 4060 (2003).CrossRefGoogle Scholar
  6. Choi, S. J., Yoo, P. J., Baek, S. J., Kim, T.W. and Lee, H. H., “An ultraviolet curable mold for sub-100 nm lithography,”J. Am. Chem. Soc.,126, 7744 (2004).CrossRefGoogle Scholar
  7. Chou, S.Y., Krauss, P.R. and Renstrom, P. J., “Imprint lithography with 25-nanometer resolution,”Science,272, 85 (1996).CrossRefGoogle Scholar
  8. Choy, J. H., Jang, E. S., Won, J. H., Chung, J. H., Jang, D. J. and Kim, Y.W., “Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser,”Adv. Mater.,15, 1911 (2003).CrossRefGoogle Scholar
  9. Csucs, G., Kunzler, T., Feldman, K., Robin, F. and Spencer, N. D., “Microcontact printing of macromolecules with submicrometer resolution by means of polyolefin stamps,”Langmuir,19, 6104 (2003).CrossRefGoogle Scholar
  10. Delamarche, E., Schmid, H., Michel, B. and Biebuyck, H., “Stability of molded polydimethylsiloxane microstructures,”Adv. Mater.,9, 741 (1997).CrossRefGoogle Scholar
  11. Feng, L., Li, S.H., Li, Y. S., Li, H. J., Zhang, L. J., Zhai, J., Song, Y. L., Liu, B.Q., Jiang, L. and Zhu, D. B., “Super-hydrophobic surfaces: From natural to artificial,”Adv. Mater.,14, 1857 (2002).CrossRefGoogle Scholar
  12. Haes, A. J. and Van Duyne, R. P., “A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,”J. Am. Chem. Soc.,124, 10596 (2002).CrossRefGoogle Scholar
  13. Hehn, M., Ounadjela, K., Bucher, J. P., Rousseaux, F., Decanini, D., Bartenlian, B. and Chappert, C., “Nanoscale magnetic domains in mesoscopic magnets,”Science,272, 1782 (1996).CrossRefGoogle Scholar
  14. Khang, D.Y., Kang, H., Kim, T. and Lee, H. H., “Low-pressure nanoimprint lithography,”Nano. Lett.,4, 633 (2004).CrossRefGoogle Scholar
  15. Khang, D.Y. and Lee, H. H., “Pressure-assisted capillary force lithography,”Adv. Mater.,16, 176 (2004).CrossRefGoogle Scholar
  16. Kim, Y. S., Lee, H. H. and Hammond, P. T., “High density nanostructure transfer in soft molding using polyurethane acrylate molds and polyelectrolyte multilayers,”Nanotechnology,14, 1140 (2003).CrossRefGoogle Scholar
  17. Kim, Y. S., Suh, K.Y. and Lee, H. H., “Fabrication of three-dimensional microstructures by soft molding,”Appl. Phys. Lett.,79, 2285 (2001).CrossRefGoogle Scholar
  18. Krauss, P. R. and Chou, S.Y., “Nano-compact disks with 400 Gbit/in(2) storage density fabricated using nanoimprint lithography and read with proximal probe,”Appl. Phys. Lett.,71, 3174 (1997).CrossRefGoogle Scholar
  19. Lee, K. B., Kim, D. J., Yoon, K. R., Kim, Y. and Choi, I. S., “Patterning Si by using surface functionalization and microcontact printing with a polymeric ink,”Korean J. Chem. Eng.,20, 956 (2003).CrossRefGoogle Scholar
  20. Lee, K.B., Park, S., Mirkin, C. A., Smith, J. C. and Mrksich, M., “Protein nanoarrays generated by dip-pen nanolithography,”Science,295, 1702 (2002).CrossRefGoogle Scholar
  21. Neinhuis, C. and Barthlott, W., “Characterization and distribution of water-repellent, self-cleaning plant surfaces,”Ann. Bot.,79, 667 (1997).CrossRefGoogle Scholar
  22. Odom, T.W., Love, J. C., Wolfe, D. B., Paul, K. E. and Whitesides, G.M., “Improved pattern transfer in soft lithography using composite stamps,”Langmuir,18, 5314 (2002).CrossRefGoogle Scholar
  23. Poborchii, V.V., Tada, T. and Kanayama, T., “A visible-near infrared range photonic crystal made up of Si nanopillars,”Appl. Phys. Lett.,75, 3276 (1999).CrossRefGoogle Scholar
  24. Schmid, H. and Michel, B., “Siloxane polymers for high-resolution, highaccuracy soft lithography,”Macromolecules,33, 3042 (2000).CrossRefGoogle Scholar
  25. Seo, S. M., Park, J.Y. and Lee, H. H., “Micropatterning of metal substrate by adhesive force lithography,”Appl. Phys. Lett.,86, (2005). As described in this paper, we used the relation γ1(1+cosθ)= 2(γ sdγ1d)1/2+2(γ spγ1p)1/2 to estimate the contact angle of PMMA on PUA mold (θ), where the superscripts d and p are for the dispersion and polar components of the surface tensionγ. Calculated dispersion and polar components surface tensions of PUA mold and PMMA are as follows: γPUAd=21.6, γPUAp=33.3 (PUA=solid), γPMAd=39.89, γPMMAp= 3.17mJ/m2 (PMMA=liquid). From these values,θ =33.3o was obtained.Google Scholar
  26. Suh, K.Y., Kim, Y. S. and Lee, H. H., “Capillary force lithography,”Adv. Mater.,13, 1386 (2001).CrossRefGoogle Scholar
  27. Suh, K.Y., Langer, R. and Lahann, J., “Fabrication of elastomeric stamps with polymer-reinforced sidewalls via chemically selective vapor deposition polymerization of poly(p-xylylene),”Appl. Phys. Lett.,83, 4250 (2003).CrossRefGoogle Scholar
  28. Suh, K.Y. and Lee, H. H., “Capillary force lithography: Large-area patterning, self-organization, and anisotropic dewetting,”Adv. Funct. Mater.,12, 405 (2002).CrossRefGoogle Scholar
  29. Wanke, M. C., Lehmann, O., Muller, K., Wen, Q. Z. and Stuke, M., “Laser rapid prototyping of photonic band-gap microstructures,”Science,275, 1284 (1997).CrossRefGoogle Scholar
  30. Wu, S., Polymer Interface and Adhesion, Dekker, New York (1982).Google Scholar
  31. Xia, Y. N. and Whitesides, G. M., “Soft lithography,”Annu. Rev. Mater. Sci.,28, 153 (1998).CrossRefGoogle Scholar
  32. Yang, S.M. and Ozin, G. A., “Opal chips: vectorial growth of colloidal crystal patterns inside silicon wafers,”Chem. Comm.,24, 2507 (2000).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineering 2006

Authors and Affiliations

  • Kahp Yang Suh
    • 1
  • Hoon Eui Jeong
    • 1
  • Jee Won Park
    • 1
  • Sung Hoon Lee
    • 1
  • Jae Kwan Kim
    • 1
  1. 1.School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations