Advertisement

Sadhana

, Volume 28, Issue 3–4, pp 601–637 | Cite as

Corrosion of bio implants

  • U. Kamachimudali
  • T. M. Sridhar
  • Baldev Raj
Article

Abstract

Chemical stability, mechanical behaviour and biocompatibility in body fluids and tissues are the basic requirements for successful application of implant materials in bone fractures and replacements. Corrosion is one of the major processes affecting the life and service of orthopaedic devices made of metals and alloys used as implants in the body. Among the metals and alloys known, stainless steels (SS), Co-Cr alloys and titanium and its alloys are the most widely used for the making of biodevices for extended life in human body. Incidences of failure of stainless steel implant devices reveal the occurrence of significant localised corroding viz., pitting and crevice corrosion. Titanium forms a stable TiO2 film which can release titanium particles under wear into the body environment. To reduce corrosion and achieve better biocompatibility, bulk alloying of stainless steels with titanium and nitrogen, surface alloying by ion implantation of stainless steels and titanium and its alloys, and surface modification of stainless steel with bioceramic coatings are considered potential methods for improving the performance of orthopaedic devices. This review discusses these issues in depth and examines emerging directions.

Keywords

Orthopaedic implants surface modification hydroxyapatite bio-ceramics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arumugam T K 1998In vitro and in vivo electrochemical corrosion studies on modified stainless steel materials for orthopaedic implant applications. Ph D thesis, University of Madras, ChennaiGoogle Scholar
  2. Arumugam T K, Rajeswari S, Subbaiyan M 1997In vitro electrochemical investigations of titanium stabilized stainless steels for applications as orthopaedic implants.Bull. Electrochem. 13: 103–106Google Scholar
  3. Arumugam T K, Rajeswari S, Subbaiyan M 1998In vitro electrochemical investigations on super austenitic stainless steels for applications as orthopaedic implants. InBiomedical materials and devices — New frontiers (ed) M Jayabalan (Trivandrum: SCTIMST) pp 61–65Google Scholar
  4. Arumugam T K, Rajeswari S, Subbaiyan M 1998 Electrochemical behaviour of advanced stainless steel implant material in saline physiological solution with calcium and phosphate ions and serum proteins.Trans. Indian Inst. Met. 51: 417–22Google Scholar
  5. Asokamani R, Balu R, Bhuvaneswaran N, Kamachi Mudali U 2000In vitro corrosion investigations on nitrogen ion implanted Ti-6Al-7Nb alloy.Proc. Seventh Int. Symp. on Electrochemical Methods in Corrosion Research (EMCR), Hungary, Paper No. 110Google Scholar
  6. Bates J B 1973 Cathodic protection to prevent crevice corrosion of stainless steel in halide media.Corrosion 29: 28–32Google Scholar
  7. Breme J, Biehl V, Hoffmann A 2000 Tailor-made composites on titanium for medical devices.Adv. Eng. Mater. 2: 270–275CrossRefGoogle Scholar
  8. Chai C, Nissan B B, Pyke S, Evans L 2001 Sol-gel derived hydroxylapatite coatings for biomédical applications.Surface modification technologies on CD (ASM International)Google Scholar
  9. Chu T M G, Halloran T W, Hollister S J, Fainberg C E 2001 Hydroxyapatite implants designed with internal architecture.J. Mater. Sci. Mater. Med, 12: 471–478CrossRefGoogle Scholar
  10. Clayton C R 1986 Passivity mechanisms in stainless steels. MO-N Synergism Report no. N00014-85-K-0437, New YorkGoogle Scholar
  11. Clayton C R, Lu Y C 1986 A bipolar model of the passivity of stainless steel: The role of Mo addition.J. Electrochem. Soc. 13: 2465–2473CrossRefGoogle Scholar
  12. Dobbs H S 1982 Fracture of titanium orthopaedic implants.J. Mater. Sci. 17: 2398–94CrossRefGoogle Scholar
  13. Fontana M G, Greene N D 1987Corrosion engineering (New York: McGraw-Hill)Google Scholar
  14. Geetha M, Kamachi Mudali U, Pandey N D, Gogia A K, Asokamani R, Baldev Raj 2001In vitro corrosion behaviour of laser nitrided Ti-13Nb-13Zr alloy.Proc. of the First Asian-Pacific Conference and 6th National Convention on Corrosion on CD, Nov 28–30Google Scholar
  15. GeethaM, Kamachi Mudali U, Gogia A K, Asokamani R, Baldev Raj 2002 Influence of microstructural changes on the corrosion behaviour of beta-rich titanium alloys.Corros. Sci. (communicated)Google Scholar
  16. Groot K de, Wolke J G C, Jansen J A 1998 Calcium phosphate coatings for medical implants.Inst. Mech. Eng. 212: 137–147Google Scholar
  17. Helmus M N, Tweden K 1995 Materials selection. InEncyclopedic handbook of biomaterials and bioengineering, Part A: Materials (eds) D L Wise, D J Trantolo, D E Altobelli, M J Yaszemski, J D Gresser, E R Schwartz (New York: Marcel Dekker) pp 27–45Google Scholar
  18. Hench L L, Ethridge E C 1982Biomaterials: An interfacial approach (New York: Academic Press)Google Scholar
  19. Hench L L 1985 Inorganic biomaterials. InAdvances in chemistry series 245: Materials chemistry — an emerging discipline (eds) L V Interranate, L A Caspar, A B Ellis (Washington DC: American Chemical Society) p. 523Google Scholar
  20. Hench L L 1991 Bioceramics: From concept to clinic.J. Am. Ceram. Soc. 14: 1487–1510CrossRefGoogle Scholar
  21. Hu J, Zhano Z J, Li L X 1993 Corrosion fatigue resistance of surgical implant stainless steels and titanium alloys.Corros. Sci. 35: 587–97CrossRefGoogle Scholar
  22. Kamachi Mudali U 1993Studies on pitting, intergranular corrosion and passive film of nitrogen-bearing austenitic stainless steels. Ph D thesis, University of MadrasGoogle Scholar
  23. Kamachi Mudali U, Dayal R K 2000 Influence of nitrogen addition on crevice corrosion resistance of nitrogen-bearing austenitic stainless steels.J. Mater. Sci. 35: 1799–1803CrossRefGoogle Scholar
  24. Kamachi Mudali U, Katada Y 2001 Electrochemical atomic force microscopic studies on passive films on nitrogen-bearing austenitic stainless steels.Electrochim. Acta 46: 3735–3742CrossRefGoogle Scholar
  25. Kamachi Mudali U, Dayal R K, Gill T P S, Gnanamoorthy J B 1986 Influence of microstructure and pitting corrosion resistance of austenitic welds metals.Werkstoffe Korrosion 37: 637–643Google Scholar
  26. Kamachi Mudali U, Dayal R K, Gill T P S, Gnanamoorthy J B 1990 Pitting corrosion resistance of nitrogen-added AISI type 304 SS weld metal with different heat inputs.Corrosion 37: 454–460Google Scholar
  27. Kamachi Mudali U, Dayal R K, Gnanamoorthy J B, Rodriguez P 1996a Influence of thermal ageing on the intergranular corrosion resistance of nitrogen-bearing austenitic stainless steels.Metal. Trans. A27: 2881–2887CrossRefGoogle Scholar
  28. Kamachi Mudali U, Dayal R K, Gnanamoorthy J B, Rodriguez P 1996b Pitting corrosion studies on nitrogen-bearing types 304, 316 and 317 stainless steels.Mater. Trans. Jap. Inst. Metal. 37: 1568–1573Google Scholar
  29. Kamachi Mudali U, Dayal R K, Gnanamoorthy J B, Rodriguez P 1996c Relationship between pitting and intergranular corrosion of nitrogen-bearing austenitic stainless steels.ISIJ Int. 36: 799–806Google Scholar
  30. Kamachi Mudali U, Dayal R K, Venkadesan S, Gnanamoorthy J B 1996d Influence of titanium addition on pitting, crevice corrosion and intergranular corrosion resistances of type 316 stainless steels.Met. Mater. Process. 8: 139–146Google Scholar
  31. Kamachi Mudali U, Dayal R K, Gnanamoorthy J B, Rodriguez P 1997a Role of nitrogen in improving the passive film stability and pitting corrosion resistance of austenitic stainless steels.Trans. Indian Inst. Met. 50: 37–47Google Scholar
  32. Kamachi Mudali U, Sundararajan T, Nair K G M, Dayal R K 1997b Nitrogen ion implantation of type 316 stainless steel to improve intergranular and pitting corrosion resistances.Corrosion and its control (eds) A S Khanna, M K Totlani, S K Singh (Amsterdam: Elsevier) vol 2, pp 566–573Google Scholar
  33. Kamachi Mudali U, Ningshen S, Dayal R K 1999a Study of passive films of nitrogen-bearing austenitic stainless steels using electrochemical impedance spectroscopy.Bull. Electrochem. 15: 74–78Google Scholar
  34. KamachiMudali U, Ningshen S, Tyagi A K, Dayal R K 1999b Influence of metallurgical and chemical variables on the pitting corrosion behaviour of nitrogen-bearing austenitic stainless steels.Mater. Sci. Forum 318-320: 495–502Google Scholar
  35. KamachiMudali U, Reynders B, Stratmann M 1999c Localised corrosion behaviour of Fe-N model alloys.Corros. Sci. 41: 179–189CrossRefGoogle Scholar
  36. KamachiMudali U, Shankar P, Sundararaman D, Dayal R K 1999d Microstructural and electrochemical studies in thermally aged type 316LN stainless steels.Mater. Sci. Tech. 15: 1451–1453Google Scholar
  37. KamachiMudali U, Sundararajan T, Loganathan E, Nair K G M, Dayal R K 1999e Pitting and intergranular corrosion resistances of nitrogen ion implanted type 304 stainless steel.Mater. Sci. Forum 318-320: 531–538CrossRefGoogle Scholar
  38. KamachiMudali U, Pujar M G, Dayal R K 2000 On the pitting corrosion resistance of as-welded and thermally aged nitrogen-bearing type 316 stainless steel weld metal.Mater. Sci. Technol. 16: 393–398Google Scholar
  39. Kasuga T, Mizuno T, Watanabe M, Nogami M, Niinomi M 2001 Calcium phosphate invert glass-ceramic coatings joined by self-development of compositionally gradient layers on a titanium alloy.Biomaterials 22: 577–582CrossRefGoogle Scholar
  40. Khor K A, Wang Y 2001 Functionally Graded Coatings for Biomédical Applications.Surface Modification Technologies on CD (ASM International)Google Scholar
  41. Kruger J 1979 Fundamental aspects of corrosion of metallic implants. InCorrosion and degradation of implant materials (eds) B C Syrett, A Acharya, ASTM STP 684, pp 107–113Google Scholar
  42. Lin J H C, Kuo K H, Ding S J, Ju C P 2001 Surface reaction of stoichiometric and calcium deficient hydroxyapatite in simulated body fluid.J. Mater. Sci. Mater. Med. 12: 731–741CrossRefGoogle Scholar
  43. Liu Y, Layrolle P, Bruijn D, van Blitterswijk J, de Groot C K 2001 Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy.J. Biomed. Mater. Res. 57: 327–335CrossRefGoogle Scholar
  44. Li F, Feng Q L, Cui F Z, Li H D, Schubert H 2002 A simple biomimetic method for calcium phosphate coating.Surf. Coat. Technol. (in press)Google Scholar
  45. Lugscheider E, Remer P, Nyland A 2001 High velocity oxy fuel spraying: An alternative to the established APS-process for production of bioactive coatings.Surface modification technologies on CD (ASM International)Google Scholar
  46. Park E, Condrate Sr R A 1999 Graded coatings of hydroxyapatite and titanium by atmospheric plasma spraying.Mater. Lett. 40: 228–234CrossRefGoogle Scholar
  47. Park J P, Lakes R S 1992Biomaterials: An introduction 2nd edn (New York: Plenum)Google Scholar
  48. Pfaff H G, Willmann G, Pothig R 1993 Properties of HA-Coatings. InBioceramics (eds) P Ducheyne, D Christiansen (London: Butterworth-Heinemann) vol 6, pp 421–424Google Scholar
  49. Pholer OEM 1986 Failure of orthopaedic metallic implants.ASM handbook on failure analysis and prevention 9th edn (Metals Park, OH: ASM International) vol 11, p 670Google Scholar
  50. Platon F, Fournier P, Rouxel S 2001 Tribological behaviour of DLC coatings compared to different materials used in hip-joint prostheses.Wear 250: 227–236CrossRefGoogle Scholar
  51. Pujar M G, Kamachi Mudali U, Dayal R K, Gill T P S 1992 Susceptibility of as-welded and thermally aged type 316LN weldments towards pitting and intergranular corrosion.Corrosion 48: 579–586CrossRefGoogle Scholar
  52. Shreir L L, Jarman R A, Brustein G T 1994Corrosion. Vol.1: Metal/environment reactions, Vol. 2: Corrosion control 3rd edn (London: Butterworth Heinemann)Google Scholar
  53. Silver F H 1994Biomaterials medical devices and tissue engineering: An intergrated approach. (London: Chapman & Hall)Google Scholar
  54. Silver F, Doillon C 1989Biocompatibility: Interactions of biological and implantable materials (New York: VCH Publishers) vol. 1Google Scholar
  55. Sivakumar M 1992In vitro corrosion and failure investigations on stainless steel orthopaedic implant devices. PhD thesis, University of Madras, ChennaiGoogle Scholar
  56. Sivakumar M, Rajeswari S 1992 Investigations of failures in stainless steel orthopaedic implant devices: Pit induced stress corrosion cracking.J. Mater. Sci. Lett. 11: 1039–1042CrossRefGoogle Scholar
  57. Sivakumar M, Kamachi Mudali U, Rajeswari S 1993a Compatibility of ferritic and duplex stainless steels as implant materials.J. Mater. Sci. 28: 6081–6086CrossRefGoogle Scholar
  58. Sivakumar M, Kamachi Mudali U, Rajeswari S 1993b Nitrogen-bearing austenitic stainless steels -A promising replacement for currently used 316L stainless steel orthopaedic implant material.Proc. Twelfth Inter. Corros. Congress, Houston (TX), vol. 3B, pp 1942–1948Google Scholar
  59. Sivakumar M, Kamachi Mudali U, Rajeswari S 1993c Pit-induced corrosion failures in stainless steel orthopaedic implant devices.Proc. Twelfth Inter. Corros. Congress, Houston (TX), vol. 3B, pp 1949–1956Google Scholar
  60. Sivakumar M, Kamachi Mudali U, Rajeswari S 1994 Investigation of failures in stainless steel orthopaedic implant devices: Fatigue failure due to improper fixation of a compression bone plate.J. Mater. Sci. Lett. 13: 142–145CrossRefGoogle Scholar
  61. Sivakumar M, Kamachi Mudali U, Rajeswari S 1994In vitro electrochemical investigations of stainless steels for orthopaedic implant applications.J. Mater. Eng. Perform. 3: 744–753CrossRefGoogle Scholar
  62. Sivakumar M, Kamachi Mudali U, Rajeswari S 1994a Investigation of failures in stainless steel orthopaedic implant device.Steel Res. 65: 76–79Google Scholar
  63. Sivakumar M, Kamachi Mudali U, Rajeswari S 1994b Investigation of fatigue failure of a stainless steel orthopaedic implant device.J. Mater. Eng. Perform. 3: 111–114CrossRefGoogle Scholar
  64. Sivakumar M, Suresh Kumar Dhanadurai K, Rajeswari S, Thulasiraman V 1995a Failures in stainless steel orthopaedic implant devices: A survey.J. Mater. Sci. Lett. 14: 351–354CrossRefGoogle Scholar
  65. Sivakumar M, Kamachi Mudali U, Rajeswari S 1995b Investigation of failures in stainless steel orthopaedic implant devices: Pit induced fatigue cracks.J. Mater. Sci. Lett. 14: 148–151CrossRefGoogle Scholar
  66. Sousa S R, Barbosa M A 1991 Electrochemistry of AISI 316L stainless steel in calcium phosphate and protein solutions.J. Mater. Sci. Mater. Med. 2: 19–26CrossRefGoogle Scholar
  67. Sridhar T M 2001Synthesis, electrophoretic deposition and characterization of hydroxyapatite coatings on type 316L SSfor orthopaedic applications. Ph D thesis, University of Madras, ChennaiGoogle Scholar
  68. Sridhar T M, Arumugam T K, Rajeswari S, Subbaiyan M 1997 Electrochemical behaviour of hydroxyapatite-coated stainless steel implants.J. Mater. Sci. Lett. 16: 1964–67CrossRefGoogle Scholar
  69. Sridhar T M, Rajeswari S, Subbaiyan M 1998 Effect of current density on hydroxyapatite coatings on 316L stainless steel and its polarisation behaviour. InBiomédical materials and devices — New frontiers (ed) M Jayabalan (Trivandrum: SCTIMST) pp 52–56Google Scholar
  70. Sridhar T M, Rajeswari S, Subbaiyan M 1999In vitro electrochemical characterisation of hydroxyapatite coated stainless steel implants in the presence of serum proteins.Bull. Electrochem. 15: 139–142Google Scholar
  71. Sridhar TM, Kamachi Mudali U, Rajeswari S, Subbaiyan M 2000a Electrochemical impedance studies on hydroxyapatite coated type 316L stainless steel.Proc. Seventh Int. Symp. on Electrochemical Methods in Corrosion Research (EMCR) Hungary, Paper No. 110Google Scholar
  72. Sridhar T M, Kamachi Mudali U, Rajeswari S, Subbaiyan M 2000b Sintering effects on hydroxyapatite coated type 316L stainless steels and their impedance behaviour in Ringer’s solution.Proc. Int. Conf. on Advances in Composites — 2000 (eds) E D Dwarakadasa, K G Krishnadas Nair (Bangalore: FAME) 256–273Google Scholar
  73. Sridhar T M, Kamachi Mudali U, Subbaiyan M 2002a Preparation and characterisation of hydroxyapatite coated 316L stainless steel.Corros. Sci. 45: 237–252CrossRefGoogle Scholar
  74. Sridhar T M, Kamachi Mudali U, Subbaiyan M 2002b Electrophoretic deposition of hydroxyapatite coated type 316L stainless steel and its corrosion performance.Corrosion (communicated)Google Scholar
  75. Sridhar T M, Kamachi Mudali U, Subbaiyan M 2002c Sintering treatments on hydroxyapatite coatings — an electrochemical impedance study.Proc. Int. Conf. on Advances in Surface Science and Engineering — INSURE (in press)Google Scholar
  76. Sridhar T M, Kamachi Mudali U, Subbaiyan M 2002d Sintering atmosphere and temperature effects on hydroxyapatite coated type 316L stainless steels.Corros. Sci. (communicated)Google Scholar
  77. Subbaiyan M, Sundararajan T, Rajeswari S, Kamachi Mudali U, Nair K G M, Thampi N S 1996aIn vitro evaluation of corrosion resistance of nitrogen ion implanted titanium in simulated body fluid.Advances in surface engineering (eds) P K Datta (London: Royal Society of Chemistry) pp 26–37Google Scholar
  78. Subbaiyan M, Veerabadran KM, Thampi N S, Krishan K, Kamachi Mudali U, Dayal R K 1996b Pitting corrosion studies on nitrogen ion implanted type 316L SS for biomédical applications.Advances in surface engineering (eds) P K Datta (London: Royal Society of Chemistry) pp 38–7Google Scholar
  79. Sundararajan T 1998In vitro corrosion evaluation and surface characterization of nitrogen ion implantated titanium, Ti6Al4V and Ti-modified stainless steel. Ph D thesis, University of Madras, ChennaiGoogle Scholar
  80. Sundararajan T, Kamachi Mudali U, Nair K G M, Rajeswari S, Subbaiyan M 1996 Electrochemical and XPS investigations of nitrogen ion implanted Ti6 Al4V alloy.Proc. Discuss. Meeting on Surface Sci. Eng. (SURE 96) (Indian Inst. Met.) pp 234–242Google Scholar
  81. Sundararajan T, Kamachi Mudali U, Nair K G M, Rajeswari S, Subbaiyan M 1997 Localised corrosion behaviour of argon ion implanted titanium modified type 316L stainless steel for application as orthopaedic implant devices.Corrosion and its control (eds) A S Khanna, M K Totlani, S K Singh (Amsterdam: Elsevier) vol. 2, pp 1121–1127Google Scholar
  82. Sundararajan T, Kamachi Mudali U, Nair K G M, Rajeswari S, Subbaiyan M 1998a Electrochemical studies on nitrogen ion implanted Ti6Al4V alloy.Anti-Corros. Methods Mater. 45: 162–166CrossRefGoogle Scholar
  83. Sundararajan T, Kamachi Mudali U, Nair K G M, Rajeswari S, Subbaiyan M 1998b Surface characterisation of electrochemically formed passive film of nitrogen ion implanted Ti6Al4V alloy.Mater. Trans. Jpn. Inst. Met. 39: 759–764Google Scholar
  84. Sundararajan T, Kamachi Mudali U, Nair K G M, Rajeswari S, Subbaiyan M 1999a Effects of nitrogen ion implantation on the localised corrosion behaviour of titanium modified type 316L stainless steel in simulated body fluid.J. Mater. Eng. Perform. 8: 252–260CrossRefGoogle Scholar
  85. Sundararajan T, Kamachi Mudali U, Nair K G M, Rajeswari S, Subbaiyan M 1999bIn vitro corrosion evaluation of nitrogen ion implanted titanium in simulated body fluid.Werkstoffe Korros. 50: 344–349CrossRefGoogle Scholar
  86. Sundararajan T, Kamachi Mudali U, Nair K G M, Rajeswari S, Subbaiyan M 1999c Corrosion behaviour of nitrogen ion implanted titanium modified type 316 stainless steel in comparison with argon and oxygen ion implantations.Mater. Sci. Forum 318-320: 553–560Google Scholar
  87. Sundararajan T, Kamachi Mudali U, Nair K G M, Rajeswari S, Subbaiyan M 2000In vitro corrosion evaluation of nitrogen ion implanted titanium in simulated body fluid.Trans. Indian Inst. Met. 52: 413–421Google Scholar
  88. Symko O G, Park W, Kieda D 2001 Quasicrystal thin films for biomedical applications.Surface modification technologies on CD (ASM International)Google Scholar
  89. Syrett B C, Wing S S 1978 An electrochemical investigation of fretting corrosion of surgical implant materials.Corrosion 11: 379–386Google Scholar
  90. Tanabe H, Kamachi Mudali U, Togashi K, Misawa T 1998In situ pH measurements during localised corrosion of type 316LN stainless steel using scanning electrochemical microscopy.J. Mater. Sci. Lett. 17: 551–553CrossRefGoogle Scholar
  91. Thair L, Kamachi Mudali U, Rajagopalan S, Nair K G M, Asokamani R, Baldev Raj 2001 Role of alloying elements on the passive films of nitrogen ion implanted Ti-6Al-4V and Ti-6Al-7Nb alloys.Proc. First Asian-Pacific Conference and 6th National Convention on Corrosion on CD, Nov 28–30Google Scholar
  92. Thair L, Kamachi Mudali U, Bhuvaneswaran N, Nair K G M, Asokamani R 2002 Nitrogen ion implantation andin vitro corrosion behaviour of Ti-6Al-7Nb alloy.Corros. Sci. 44: 2027–2039CrossRefGoogle Scholar
  93. TIFAC 1996 V:08:V:ESDR, DST, Material & Processing: Technology Vision 2020, September, New DelhiGoogle Scholar
  94. Ukai H, Murakami K 2001 Surface characterization of Ca implanted titanium for biomaterials.Surface Modification Technologies on CD (ASM International)Google Scholar
  95. Veerabadran K M 1999Nitrogen ion implantation for improving localized corrosion resistance of surgical grade and advanced type 316L stainless steels for orthopaedic implant devices. Ph D thesis, University of Madras, ChennaiGoogle Scholar
  96. Veerabadran K M, Kamachi Mudali U, Nair K G M, Subbaiyan M 1996 Surface modification of surgical grade stainless steel orthopaedic implants by ion implantation and investigation of localised corrosion.Proc. Discuss. Meeting on Surface Sci. Eng. (SURE 96) (Indian. Inst. Met.) pp 226–233Google Scholar
  97. Veerabadran K M, Kamachi Mudali U, Nair K G M, Subbaiyan M 1999 Improvements in localised corrosion resistance of nitrogen ion implanted type 316L stainless steel orthopaedic implant devices.Mater. Sci. Forum 318-320: 561–568Google Scholar
  98. Von Recum A F 1999 Handbook ofbiomaterials evaluation — Scientific, technical and clinical testing of implant materials 2nd edn (Philadelphia: Taylor & Francis)Google Scholar
  99. Wang M, Deb S, Bonfield W 2000 Chemically coupled hydroxyapatite-polyethylene composites: processing and characterization.Mater. Lett. 44: 119–124CrossRefGoogle Scholar
  100. Williams D F 1981 Electrochemical aspects of corrosion in the physiological environment. InFundamental aspects of biocompatibility (ed) D F Willams D F (Boca Raton, FL: CRC press) vol. 1, pp 11–20Google Scholar
  101. Yamada H 1970Strength of biological materials (Baltimore: Williams & Williams)Google Scholar

Copyright information

© Printed in India 2003

Authors and Affiliations

  • U. Kamachimudali
    • 1
  • T. M. Sridhar
    • 1
  • Baldev Raj
    • 1
  1. 1.Metallurgy and Materials GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations