Advertisement

Journal of Biosciences

, Volume 31, Issue 1, pp 137–155 | Cite as

The ubiquitin-proteasome system

  • Dipankar Nandi
  • Pankaj Tahiliani
  • Anujith Kumar
  • Dilip Chandu
Review

Abstract

The 2004 Nobel Prize in chemistry for the discovery of protein ubiquitination has led to the recognition of cellular proteolysis as a central area of research in biology. Eukaryotic proteins targeted for degradation by this pathway are first ‘tagged’ by multimers of a protein known as ubiquitin and are later proteolyzed by a giant enzyme known as the proteasome. This article recounts the key observations that led to the discovery of ubiquitin-proteasome system (UPS). In addition, different aspects of proteasome biology are highlighted. Finally, some key roles of the UPS in different areas of biology and the use of inhibitors of this pathway as possible drug targets are discussed.

Keywords

Cellular proteolysis proteasomes protein degradation ubiquitination 

Abbreviations used

AAA-ATPase

ATPases associated with various cellular activities-ATPase

BrAAP

branched chain amino acids preferring

CSN

COP9 signalosome

ER

endoplasmic reticulum

HECT

homologous to E6-AP carboxyl terminus

IFN

interferon

MHC

major histocompatibility complex

NTN

N-terminal nucleophile

PA

proteasome activator

PAC

proteasome assembling chaperone

PAN

proteasome-activating nucleotidase

PI

proteasome inhibitor

POMP

proteasome maturing protein

RING

really interesting new gene

Rpn

regulatory particle non-ATPase

Rpt

regulatory particle tripleA-ATPase

SCF

Skp-Cullin-F box

SNAAP

small neutral amino acids preferring

UBH

ubiquitin hydrolase

UBP

ubiqutin processing

UMP1

ubiquitin mediated proteolysis-1

UPS

ubiquitin-proteasome system

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams J 2003 Potential for proteasome inhibition in the treatment of cancer;Drug Discovery Today 8 307–315PubMedCrossRefGoogle Scholar
  2. Adrain C, Creagh E M, Cullen S P and Martin S J 2004 Caspasedependent inactivation of proteasome function during programmed cell death inDrosophila and man;J. Biol. Chem. 279 36923–36930CrossRefGoogle Scholar
  3. Apcher G S, Heink S, Zantopf D, Kloetzel P M, Schmid H P, Mayer R J and Kruger E 2003 Human immunodeficiency virus-1 Tat protein interacts with distinct proteasomal alpha and beta subunits;FEBSLett. 553 200–204CrossRefGoogle Scholar
  4. Arendt C S and Hochstrasser M 1999 Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly;EMBO J. 18 3575–3585PubMedCrossRefGoogle Scholar
  5. Arrigo A P, Tanaka K, Goldberg A L and Welch W J 1988 Identity of the 19S ‘prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome);Nature (London) 331 192–204CrossRefGoogle Scholar
  6. Arthur J S, Elce J S, Hegadorn C, Williams K and Greer P A 2000 Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division;Mol. Cell. Biol. 20 4474–4481.PubMedCrossRefGoogle Scholar
  7. Barton L F, Cruz M, Rangwala R, Deepe G S Jr and Monaco J J 2002 Regulation of immunoproteasome subunit expressionin vivo following pathogenic fungal infection;J. Immunol. 169 3046–3052Google Scholar
  8. Barton L F, Runnels H A, Schell T D, Cho Y, Gibbons R, Tevethia S S, Deepe G S Jr and Monaco J J 2004 Immune defects in 28-kDa proteasome activator gamma-deficient mice;J. Immunol. 172 3948–3954.PubMedGoogle Scholar
  9. Benaroudj N and Goldberg A L 2000 PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone;Nat. Cell. Biol. 2 833–839PubMedCrossRefGoogle Scholar
  10. Benaroudj N, Zwickl P, Seemuller E, Baumeister W and Goldberg A L 2003 ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation;Mol. Cell 11 69–78PubMedCrossRefGoogle Scholar
  11. Berndt C, Bech-Otschir D, Dubiel W and Seeger M 2002 Ubiquitin System: JAMMing in the Name of the Lid;Curr. Biol. 12 R815-R817PubMedCrossRefGoogle Scholar
  12. Brown M S, Ye J, Rawson R B and Goldstein J L 2000 Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans;Cell 100 391–398PubMedCrossRefGoogle Scholar
  13. Burri L, Hockendorff J, Boehm U, Klamp T, Dohmen R J and Levy F 2000 Identification and characterization of a mammalian protein interacting with 20S proteasome precursors;Proc. Natl. Acad. Sci. USA 97 10348–10353PubMedCrossRefGoogle Scholar
  14. Cardozo T and Pagano M 2004 The SCF ubiquitin ligase: insights into a molecular machine;Nat. Rev. Mol. Cell. Biol. 5 739–751PubMedCrossRefGoogle Scholar
  15. Chu-Ping M, Slaughter C A and Demartino G N 1992 Purification and characterization of a protein inhibitor of the 20S proteasome (macropain);Biochem. Biophys. Acta 1119 303–311Google Scholar
  16. Chandu D and Nandi D 2002 From proteins to peptides to amino acids: comparative genomics of enzymes involved in downstream events during cytosolic protein degradation;Appl. Genom. Proteom. 4 235–252Google Scholar
  17. Chandu D and Nandi D 2004 Comparative genomics and functional roles of the ATP-dependent proteases Lon and Clp during cytosolic protein degradation;Res. Microbiol. 155 710–719PubMedCrossRefGoogle Scholar
  18. Chen P and Hochstrasser M 1996 Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly;Cell 86 961–972PubMedCrossRefGoogle Scholar
  19. Ciechanover A, Hod Y and Hershko A 1978 A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes;Biochem. Biophys. Res. Commun. 81 1100–1105CrossRefGoogle Scholar
  20. Ciechanover A, Finley D and Varshavsky A 1984 Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85;Cell 37 57–66PubMedCrossRefGoogle Scholar
  21. Ciechanover A and Ben-Saadon R 2004 N-terminal ubiquitination: more protein substrates join in;Trends Cell Biol. 14 103–106PubMedCrossRefGoogle Scholar
  22. Ciechanover A and Iwai K 2004 The ubiquitin system: from basic mechanisms to the patient bed;IUBMB Life 56 193–201PubMedGoogle Scholar
  23. Cuervo A M, Palmer A, Rivett A J and Knecht E 1995 Degradation of proteasomes by lysosomes in rat liver;Eur. J. Biochem. 227 792–800PubMedCrossRefGoogle Scholar
  24. Dahlmann B, Kopp F, Kuehn L, Niedel B, Pfeifer G, Hegerl R and Baumeister W 1989 The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria;FEBS Lett. 251 125–131PubMedCrossRefGoogle Scholar
  25. Darwin K H, Ehrt S, Gutierrez-Ramos J C, Weich N and Nathan C F 2003 The proteasome ofMycobacterium tuberculosis is required for resistance to nitric oxide;Science 302 1963–1966PubMedCrossRefGoogle Scholar
  26. Darwin K H, Lin G, Chen Z, Li H and Nathan C F 2005 Characterization of aMycobacterium tuberculosis proteasomal ATPase homologue;Mol. Microbiol. 55 561–571PubMedCrossRefGoogle Scholar
  27. De M, Jayarapu K, Elenich L, Monaco J J, Colbert R A and Griffin T A 2003 Beta 2 subunit propeptides influence cooperative proteasome assembly;J. Biol. Chem. 278 6153–6159PubMedCrossRefGoogle Scholar
  28. Dick T P, Ruppert T, Groettrup M, Kloetzel P M, Kuehn L, Koszinowski U H, Stevanovic S, Schild H and Rammensee H G 1996 Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands;Cell 86 253–262PubMedCrossRefGoogle Scholar
  29. Etlinger J D and Goldberg A L 1977 A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes;Proc. Natl. Acad. Sci. USA. 74 54–58PubMedCrossRefGoogle Scholar
  30. Enenkel C, Lehmann A and Kloetzel P M 1998 Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast;EMBOJ. 17 6144–6154CrossRefGoogle Scholar
  31. Elsasser S and Finley D 2005 Delivery of ubiquitinated substrates to protein-unfolding machines;Nat. CellBiol. 7 742–749CrossRefGoogle Scholar
  32. Fabunmi R P, Wigley W C, Thomas P J and DeMartino G N 2000 Activity and regulation of the centrosome-associated proteasome;J. Biol. Chem. 275 409–413PubMedCrossRefGoogle Scholar
  33. Fehling H J, Swat W, Laplace C, Kuhn R, Rajewsky K, Muller U and von Boehmer H 1994 MHC class I expression in mice lacking the proteasome subunit LMP-7;Science 265 1234–1237PubMedCrossRefGoogle Scholar
  34. Fenteany G, Standaert R F, Lane W S, Choi S, Corey E J and Schreiber S L 1995 Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin;Science 268 726–731PubMedCrossRefGoogle Scholar
  35. Finley D, Ciechanover A and Varshavsky A 1984 Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85;Cell 37 43–55PubMedCrossRefGoogle Scholar
  36. Förster A, Whitby F G and Hill C P 2003 The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation;EMBOJ. 22 4356–4364CrossRefGoogle Scholar
  37. Förster A, Masters E I, Whitby F G, Robinson H and Hill C P 2005 The 1.9 Å structure of aproteasome-11S activator complex and implications forproteasome-PAN/PA700 interactions;Mol. Cell 18 589–599PubMedCrossRefGoogle Scholar
  38. Frentzel S, Pesold-Hurt B, Seelig A and Kloetzel P M 1994 20 S proteasomes are assembled via distinct precursor complexes. Processing of LMP2 and LMP7 proproteins takes place in 13–16 S preproteasome complexes;J. Mol. Biol. 236 975–981PubMedCrossRefGoogle Scholar
  39. Gaczynska M, Osmulski P A, Gao Y, Post M J and Simons M 2003 Proline and arginine-rich peptides constitute a novel class of allosteric inhibitors of proteasome activity;Biochemistry 42 8663–8670.PubMedCrossRefGoogle Scholar
  40. Gao Y, Lecker S, Post M J, Hietaranta A J, Li J, Volk R, Li M, Sato K, Saluja A K, Steer M L, Goldberg A L and Simons M 2000 Inhibition of ubiquitin-proteasome pathway-mediated I kappa B alpha degradation by a naturally occurring antibacterial peptide;J. Clin. Invest. 106 439–448.PubMedCrossRefGoogle Scholar
  41. Glickman M H, Rubin D M, Fried V A and Finley D 1998 The regulatory particle of theSaccharomyces cerevisiae proteasome;Mol. Cell. Biol. 18 3149–3162PubMedGoogle Scholar
  42. Goldstein J L 2004 Towering science: an ounce of creativity is worth a ton of impact;Nat. Med. 10 1015–1016PubMedCrossRefGoogle Scholar
  43. Griffin T A, Nandi D, Cruz M, Fehling H J, Kaer L V, Monaco J J and Colbert R A 1998 Immunoproteasome assembly: cooperative incorporation of interferon gamma (IFN-gamma)-inducible subunits;J. Exp. Med. 187 97–104PubMedCrossRefGoogle Scholar
  44. Griffin T A, Slack J P, McCluskey T S, Monaco J J and Colbert R A 2000 Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly;Mol. Cell. Biol. Res. Commun. 3 212–217PubMedCrossRefGoogle Scholar
  45. Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik H D and Huber R 1997 Structure of 20S Proteasome from yeast at 2.4Å resolution;Nature (London) 386 463–470CrossRefGoogle Scholar
  46. Groll M, Heinemeyer W, Jager S, Ullrich T, Bochtler M, Wolf D H and Huber R 1999 The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study;Proc. Natl. Acad. Sci. USA 96 10976–10983PubMedCrossRefGoogle Scholar
  47. Groll M, Kim K B, Kairies N, Huber R and Crews C M 2000 Crystal structure of epoxomicin: 20S proteasome reveals a molecular bassifor selectivity of alpha ‘beta’ —epoxyketone proteasome inhibitors;J. Am. Chem. Soc. 122 1237–1238CrossRefGoogle Scholar
  48. Groll M and Huber R 2004 Inhibitors of the eukaryotic 20S proteasome core particle: a structural approach;Biochim. Biophys. Acta 1695 33–44PubMedCrossRefGoogle Scholar
  49. Grune T, Jung T, Merker K and Davies K J 2004 Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease;Int. J. Biochem. Cell. Biol. 36 2519–2530PubMedCrossRefGoogle Scholar
  50. Grziwa A, Maack S, Puhler G, Wiegand G, Baumeister W and Jaenicke R 1994 Dissociation and reconstitution of the Thermoplasma proteasome;Eur. J. Biochem. 223 1061–1067PubMedCrossRefGoogle Scholar
  51. Guo G G, Gu M and Etlinger J D 1994 240-kDa proteasome inhibitor (CF-2) is identical to delta-aminolevulinic acid dehydratase;J. Biol. Chem. 269 12399–12402PubMedGoogle Scholar
  52. Harbers K, Muller U, Grams A, Li E, Jaenisch R and Franz T 1996 Provirus integration into a gene encoding a ubiquitin-conjugating enzyme results in a placental defect and embryonic lethality;Proc. Natl. Acad. Sci. USA 93 12412–12417PubMedCrossRefGoogle Scholar
  53. Harris J L, Alper P B, Li J, Rechsteiner M and Backes B J 2001 Substrate specificity of the human proteasome;Chem. Biol. 8 1131–1141PubMedCrossRefGoogle Scholar
  54. Heink S, Ludwig D, Kloetzel P and Kruger E 2005 IFNγ-induced immune adaptation of the proteasome system is an accelerated and transient response;Proc. Natl. Acad. Sci. USA. 102 9241–9246PubMedCrossRefGoogle Scholar
  55. Hendil K B, Khan S and Tanaka K 1998 Simultaneous binding of PA28 and PA700 activators to 20S proteasomes;Biochem. J. 332 749–754PubMedGoogle Scholar
  56. Hershko A, Ciechanover A and Rose I A 1979 Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP;Proc. Natl. Acad. Sci. USA 76 3107–3110PubMedCrossRefGoogle Scholar
  57. Hershko A, Ciechanover A, Heller H, Haas A L and Rose I A 1980 Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis;Proc. Natl. Acad. Sci. USA 77 1783–1786PubMedCrossRefGoogle Scholar
  58. Hershko A, Ciechanover A and Rose I A 1981 Identification of the active amino acid residue of the polypeptide of ATP-dependent protein breakdown;J. Biol. Chem. 256 1525–1528PubMedGoogle Scholar
  59. Hershko A, Eytan E, Ciechanover A and Haas A L 1982 Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins;J. Biol. Chem. 257 13964–13970PubMedGoogle Scholar
  60. Hershko A, Heller H, Elias S and Ciechanover A 1983 Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown;J. Biol. Chem 258 8206–8214PubMedGoogle Scholar
  61. Hershko A, Helen H, Eytane and Ressy 1986 The Protein substrate binding site of the Ubiquitin-Protein ligase system;J. Biol. Chem. 261 11982–11989Google Scholar
  62. Hershko A, Ganoth D, Sudakin V, Dahan A, Cohen L H, Luca F C, Ruderman J V and Eytan E 1994 Components of a system that ligates cyclin to ubiquitin and their regulation by the protein kinase cdc2;J. Biol. Chem. 269 4940–4946PubMedGoogle Scholar
  63. Heinemeyer W, Fischer M, Krimmer T, Stachon U and Wolf D H 1997 The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing;J. Biol. Chem. 272 25200–25209PubMedCrossRefGoogle Scholar
  64. Hicke L 2001 Protein regulation by monoubiquitin;Nat. Rev. Mol. Cell. Biol. 2 195–201PubMedCrossRefGoogle Scholar
  65. Hirano Y, Hendil K B, Yashiroda H, Iemura S, Nagane R, Hioki Y, Natsume T, Tanaka K and Murata S 2005 A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes;Nature (London) 437 1381–1385CrossRefGoogle Scholar
  66. Hoffman L, Pratt G and Rechsteiner M 1992 Multiple forms of the 20 S multicatalytic and the 26 S ubiquitin/ATP-dependent proteases from rabbit reticulocyte lysate;J. Biol. Chem. 267 22362–22368PubMedGoogle Scholar
  67. Hoppe T 2005 Multiubiquitylation by E4 enzymes: ‘one size’ doesn't fit all;Trends Biochem. Sci. 30 183–187PubMedCrossRefGoogle Scholar
  68. Hough R, Pratt G and Rechsteiner M 1986 Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates;j. Biol. Chem. 261 2400–2408PubMedGoogle Scholar
  69. Hu Z, Zhang Z, Doo E, Coux O, Goldberg A L and Liang T J 1999 Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex;J. Virol. 73 7231–7240PubMedGoogle Scholar
  70. Jager S, Groll M, Huber R, Wolf D H and Heinemeyer W 1999 Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function;J. Mol. Biol. 291 997–1013PubMedCrossRefGoogle Scholar
  71. Johnston J A, Ward C L and Kopito R R 1998 Aggresomes: a cellular response to misfolded proteins;J. Cell. Biol. 143 1883–1898PubMedCrossRefGoogle Scholar
  72. Karin M and Ben-Neriah Y 2000 Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity;Annu. Rev. Immunol. 18 621–663PubMedCrossRefGoogle Scholar
  73. Khan S, van den Broek M, Schwarz K, de Giuli R, Diener P A and Groettrup M 2001 Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver;J. Immunol. 167 6859–6868PubMedGoogle Scholar
  74. Kim J H, Park K C, Jung S S, Bang O and Chung C H 2003 Deubiquitinating enzymes as cellular regulators;J. Biochem. 134 9–18PubMedCrossRefGoogle Scholar
  75. Kingsbury D J, Griffin T A and Colbert R A 2000 Novel propeptide function in 20 S proteasome assembly influences beta subunit composition;J. Biol. Chem. 275 24156–24162PubMedCrossRefGoogle Scholar
  76. Kishino T, Lalande M and Wagstaff J. 1997 UBE3A/E6-AP mutations cause Angelman syndrome;Nat. Genet. 15 70–73PubMedCrossRefGoogle Scholar
  77. Kisselev A F, Akopian T N and Goldberg A L 1998 Range of sizes of peptide products generated during degradation of different proteins by archaeal proteasomes;J. Biol. Chem. 273, 1982–1989CrossRefGoogle Scholar
  78. Kisselev A F, Akopian T N, Woo K M and Goldberg A L 1999 The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation;J. Biol. Chem. 274 3363–3371PubMedCrossRefGoogle Scholar
  79. Kisselev A F, Songyang Z and Goldberg A L 2000 Why does threonine, and not serine, function as the active site nucleophile in proteasomes?;J. Biol. Chem. 275 14831–14837PubMedCrossRefGoogle Scholar
  80. Kloetzel P M 2004 The proteasome and MHC class I antigen processing;Biochim. Biophys. Acta 1695 225–233Google Scholar
  81. Knipfer N and Shrader T E 1997 Inactivation of the 20S proteasome inMycobacterium smegmatis;Mol. Microbiol. 25 375–383PubMedCrossRefGoogle Scholar
  82. Knowlton J R, Johnston S C, Whitby F G, Realini C, Zhang Z, Rechsteiner M and Hill C P 1997 Structure of the proteasome activator REGalpha (PA28alpha);Nature (London) 390 639–643CrossRefGoogle Scholar
  83. Koegl M, Hoppe T, Schlenker S, Ulrich H D, Mayer T U and Jentsch S 1999 A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly;Cell 96 635–644PubMedCrossRefGoogle Scholar
  84. Kostova Z and Wolf D H 2003 For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection;EMBOJ. 22 2309–2317CrossRefGoogle Scholar
  85. Kruger E, Kloetzel P M and Enenkel C 2001 20S proteasome biogenesis;Biochimie 83 289–293PubMedCrossRefGoogle Scholar
  86. Leggett D S, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker R T, Walz T, Ploegh H and Finley D 2002 Multiple associated proteins regulate proteasome structure and function;Mol. Cell. 10 495–507PubMedCrossRefGoogle Scholar
  87. Li J, Gao X, Joss L and Rechsteiner M 2000 The proteasome activator 11 S REG or PA28: chimeras implicate carboxyl-terminal sequences in oligomerization and proteasome binding but not in the activation of specific proteasome catalytic subunits;J. Mol. Biol. 299 641–654PubMedCrossRefGoogle Scholar
  88. Liu C W, Corboy M J, DeMartino G N and Thomas P J 2003 Endoproteolytic Activity of the Proteasome;Science 299 408–411PubMedCrossRefGoogle Scholar
  89. Lowe J, Stock D, Jap B, Zwick P, Baumeister W and Huber R 1995 Crystal structure of the 20S Proteasome from the ArchaeonT. acidophilum at 3.4Å resolution;Science 268 533–539PubMedCrossRefGoogle Scholar
  90. Lupas A, Zwickl P and Baumeister W 1994 Proteasome sequences in eubacteria;Trends Biochem. Sci. 19 533–534PubMedCrossRefGoogle Scholar
  91. Lykke-Andersen K, Schaefer L, Menon S, Deng X W, Miller J B and Wei N 2003 Disruption of the COP9 signalosome Csn2 subunit in mice causes deficient cell proliferation, accumulation of p53 and cyclin E, and early embryonic death;Mol. Cell Biol. 23 6790–6797PubMedCrossRefGoogle Scholar
  92. Matsumoto M, Yada M, Hatakeyama S, Ishimoto H, Tanimura T, Tsuji S, Kakizuka A, Kitagawa M and Nakayama K I 2004 Molecular clearance of ataxin-3 is regulated by a mammalian E4;EMBOJ. 23 659–669CrossRefGoogle Scholar
  93. McCutchen-Maloney S L, Matsuda K, Shimbara N, Binns D D, Tanaka K, Slaughter C A and DeMartino G N 2000 cDNA cloning, expression, and functional characterization of PI31, a prolinerich inhibitor of the proteasome;J. Biol. Chem. 275 18557–18565PubMedCrossRefGoogle Scholar
  94. McDonough H and Patterson C 2003 CHIP: a link between the chaperone and proteasome systems;Cell Stress Chaperones 8 303–308PubMedCrossRefGoogle Scholar
  95. Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel P M and Kruger E 2003 Inhibition of proteasome activity induces concerted expression of proteasome genes andde novo formation of mammalian proteasomes;J. Biol. Chem. 278 21517–21525PubMedCrossRefGoogle Scholar
  96. Meng L, Mohan R, Kwok B H, Elofsson M, Sin N and Crews C M 1999 Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity;Proc. Natl. Acad. Sci. USA 96 10403–10408PubMedCrossRefGoogle Scholar
  97. Monaco J J and McDevitt H O 1984 H-2-linked low-molecular weight polypeptide antigens assemble into an unusual macromolecular complex;Nature (London) 309 797–799CrossRefGoogle Scholar
  98. Murata S, Kawahara H, Tohma S, Yamamoto K, Kasahara M, Nabeshima Y, Tanaka K and Chiba T 1999 Growth retardation in mice lacking the proteasome activator PA28gamma;J. Biol. Chem. 274 38211–38215PubMedCrossRefGoogle Scholar
  99. Murata S, Udono H, Tanahashi N, Hamada N, Watanabe K, Adachi K, Yamano T, Yui K, Kobayashi N, Kasahara M, Tanaka K and Chiba T 2001 Immunoproteasome assembly and antigen presentation in mice lacking both PA28alpha and PA28beta;EMBO J. 20 5898–5907PubMedCrossRefGoogle Scholar
  100. Murray A W 2004 Recycling the cell cycle: cyclins revisited;Cell 116 221–234PubMedCrossRefGoogle Scholar
  101. Nandi D, Woodward E, Ginsburg D B and Monaco J J 1997 Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor beta subunits;EMBO J. 16 5363–5375PubMedCrossRefGoogle Scholar
  102. Nandi D, Marusina K and Monaco J J 1998 How do endogenous proteins become peptides and reach the endoplasmic reticulum;Curr. Top. Microbiol. Immunol. 232 15–47PubMedGoogle Scholar
  103. Niedermann G, Grimm R, Geier E, Maurer M, Realini C, Gartmann C, Soll J, Omura S, Rechsteiner M C, Baumeister W and Eichmann K 1997 Potential immunocompetence of proteolytic fragments produced by proteasomes before evolution of the vertebrate immune system;J. Exp. Med. 186 209–220PubMedCrossRefGoogle Scholar
  104. Park Y, Hwang Y P, Lee J S, Seo S H, Yoon S K and Yoon J B 2005 Proteasomal ATPase-associated factor 1 negatively regulates proteasome activity by interacting with proteasomal ATPases;Mol. Cell. Biol. 25 3842–3853PubMedCrossRefGoogle Scholar
  105. Pickart C M 2001 Mechanisms underlying ubiquitination;Annu. Rev. Biochem. 70 503–533PubMedCrossRefGoogle Scholar
  106. Pickart C M and Cohen R E 2004 Proteasomes and their kin: proteases in the machine age;Nat. Rev. Mol. Cell. Biol. 5 177–187PubMedCrossRefGoogle Scholar
  107. Ping M C, Willy P J, Slaughter C A and DeMartino G N 1993 PA28, an activator of the 20 S proteasome, is inactivated by proteolytic modification at its carboxyl terminus;J. Biol. Chem. 268 22514–22519Google Scholar
  108. Rajkumar S V, Richardson P G, Hideshima T and Anderson K C 2005 Proteasome inhibition as a novel therapeutic target in human cancer;J. Clin. Oncol. 23 630–639PubMedCrossRefGoogle Scholar
  109. Ramos P C, Hockendorff J, Johnson E S, Varshavsky A and Dohmen R J 1998 Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly;Cell 92 489–499PubMedCrossRefGoogle Scholar
  110. Rao H, Uhlmann F, Nasmyth K and Varshavsky A 2001 Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability;Nature (London) 410 955–959CrossRefGoogle Scholar
  111. Rechsteiner M and Hill C P 2005 Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors;Trends Cell. Biol. 15 7–33CrossRefGoogle Scholar
  112. Reits E A, Benham A M, Plougastel B, Neefjes J and Trowsdale J 1997 Dynamics of proteasome distribution in living cells;EMBO J. 16 6087–6094PubMedCrossRefGoogle Scholar
  113. Richard I, Roudaut C, Marchand S, Baghdiguian S, Herasse M, Stockholm D, Ono Y, Suel L, Bourg N, Sorimachi H, Lefranc G, Fardeau M, Sebille A and Beckmann J S 2000 Loss of calpain 3 proteolytic activity leads to muscular dystrophy and to apoptosis-associated IkappaBalpha/nuclear factor kappaB pathway perturbation in mice;J. Cell. Biol. 151 1583–1590PubMedCrossRefGoogle Scholar
  114. Rock K L, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D and Goldberg A L 1994 Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules;Cell 78 761–771PubMedCrossRefGoogle Scholar
  115. Ruepp A, Eckerskorn C, Bogyo M and Baumeister W 1998 Proteasome function is dispensable under normal but not under heat shock conditions inThermoplasma acidophilum;FEBS Lett. 425 87–90PubMedCrossRefGoogle Scholar
  116. Sassetti C M, Boyd D H and Rubin E J 2003 Genes required for mycobacterial growth defined by high density mutagenesis;Mol. Microbiol. 48 77–84PubMedCrossRefGoogle Scholar
  117. Schauber C, Chen L, Tongaonkar P, Vega I, Lambertson D, Potts W and Madura K 1998 Rad23 links DNA repair to the ubiquitin/proteasome pathway;Nature (London) 391 715–718CrossRefGoogle Scholar
  118. Schmid H P, Akhayat O, Martins De Sa C, Puvion F, Koehler K and Scherrer K 1984 The prosome: an ubiquitous morphologically distinct RNP particle associated with repressed mRNPs and containing specific ScRNA and a characteristic set of proteins;EMBO J. 3 29–34PubMedGoogle Scholar
  119. Schwechheimer C 2004 The COP9 signalosome (CSN): an evolutionary conserved proteolysis regulator in eukaryotic development;Biochim. Biophys. Acta 1695 45–54Google Scholar
  120. Seemuller E, Lupas A, Stock D, Lowe J, Huber R and Baumeister W 1995 Proteasome fromThermoplasma acidophilum: a threonine protease;Science 268 579–582PubMedCrossRefGoogle Scholar
  121. Semple C A, Riken Ger Group and GSL Members 2003 The comparative proteomics of ubiquitination in mouse;Genome Res. 13 1389–1394PubMedCrossRefGoogle Scholar
  122. Soza A, Knuehl C, Groettrup M, Henklein P, Tanaka K and Kloetzel P M 1997 Expression and subcellular localization of mouse 20S proteasome activator complex PA28;FEBS Lett. 413 27–34PubMedCrossRefGoogle Scholar
  123. Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L and Rotin D 1997 Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination;EMBO J. 16 6325–6336PubMedCrossRefGoogle Scholar
  124. Sun X M, Butterworth M, MacFarlane M, Dubiel W, Ciechanover A and Cohen G M 2004 Caspase activation inhibits proteasome function during apoptosis;Mol. Cell. 14 81–93PubMedCrossRefGoogle Scholar
  125. Tanaka K, Ii K, Ichihara A, Waxman L and Goldberg A L 1986 A high molecular weight protease in the cytosol of rat liver. I. Purification, enzymological properties, and tissue distribution;J. Biol. Chem. 261 15197–15203PubMedGoogle Scholar
  126. Tanaka K, Yoshimura T and Ichihara A 1989 Role of substrate in reversible activation of proteasomes (multi-protease complexes) by sodium dodecyl sulfate;J. Biochem. (Tokyo) 106 495–500Google Scholar
  127. Turk V, Turk B and Turk D 2001 Lysosomal cysteine proteases: facts and opportunities;EMBO. J. 20 4629–4633PubMedCrossRefGoogle Scholar
  128. Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N and Tsukihara T 2002 The structure of the mammalian 20S proteasome at 2.75 Å resolution;Structure (Camb). 10 609–618CrossRefGoogle Scholar
  129. Ustrell V, Hoffman L, Pratt G and Rechsteiner M 2002 PA200, a nuclear proteasome activator involved in DNA repair;EMBO J. 21 3516–3525PubMedCrossRefGoogle Scholar
  130. Van Kaer L, Ashton-Rickardt P G, Eichelberger M, Gaczynska M, Nagashima K, Rock K L, Goldberg A L, Doherty P C and Tonegawa S 1994 Altered peptidase and viral-specific T cell response in LMP2 mutant mice;Immunity 1 533–541PubMedCrossRefGoogle Scholar
  131. Varshavsky A 2005 Regulated protein degradation;Trends Biochem Sci. 30 283–286PubMedCrossRefGoogle Scholar
  132. Vassilev L T, Vu B T, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N and Liu E A 2004In vivo activation of the p53 pathway by small-molecule antagonists of MDM2;Science 303 844–848CrossRefGoogle Scholar
  133. Velichutina I, Connerly P L, Arendt C S, Li X and Hochstrasser M 2004 Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast;EMBO J. 23 500–510PubMedCrossRefGoogle Scholar
  134. Verma R, Chen S, Feldman R, Schieltz D, Yates J, Dohmen J and Deshaies R J 2000 Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes;Mol. Biol. Cell. 11 3425–3439PubMedGoogle Scholar
  135. Verma R, Aravind L, Oania R, McDonald W H, Yates J R 3rd, Koonin E V and Deshaies R J 2002 Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome;Science 298 611–615PubMedCrossRefGoogle Scholar
  136. Voges D, Zwickl P and Baumeister W 1999 The 26S proteasome: a molecular machine designed for controlled proteolysis;Annu. Rev. Biochem. 68 1015–10168PubMedCrossRefGoogle Scholar
  137. Wang H R, Kania M, Baumeister W and Nederlof P M 1997 Import of human and Thermoplasma 20S proteasomes into nuclei of HeLA cells requires functional NLS sequences;Eur. J. Cell. Biol. 73 105–113PubMedGoogle Scholar
  138. Ward C L, Omura S and Kopito R R 1995 Degradation of CFTR by the ubiquitin-proteasome pathway;Cell 83 121–127PubMedCrossRefGoogle Scholar
  139. Weissman A M 2001 Themes and variations on ubiquitylation;Nat. Rev. Mol. Cell. Biol. 2 169–178PubMedCrossRefGoogle Scholar
  140. Whitby F G, Masters E I, Kramer L, Knowlton J R, Yao Y, Wang C C and Hill C P 2000 Structural basis for the activation of 20S proteasomes by 11S regulators;Nature (London) 408 115–120Google Scholar
  141. Wigley W C, Fabunmi R P, Lee M G, Marino C R, Muallem S, DeMartino G N and Thomas P J 1999 Dynamic association of proteasomal machinery with the centrosome;J. Cell. Biol. 145 481–490CrossRefGoogle Scholar
  142. Wilk S and Orlowski M 1983 Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex;J. Neurochem. 40 842–849PubMedCrossRefGoogle Scholar
  143. Wilkinson K D, Urban M K and Haas A L 1980 Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes;J. Biol. Chem. 255 7529–7532PubMedGoogle Scholar
  144. Wilkinson C R, Wallace M, Morphew M, Perry P, Allshire R, Javerzat J P, McIntosh J R and Gordon C 1998 Localization of the 26S proteasome during mitosis and meiosis in fission yeast;EMBO. J. 17 6465–6476PubMedCrossRefGoogle Scholar
  145. Witt E, Zantopf D, Schmidt M, Kraft R, Kloetzel P M and Kruger E 2000 Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7 (β5i) incorporation into 20S proteasomes;J. Mol. Biol. 30 1–9CrossRefGoogle Scholar
  146. Wojcik C and DeMartino G N 2003 Intracellular localization of proteasomes;Int. J. Biochem. Cell. Biol. 35 579–589PubMedCrossRefGoogle Scholar
  147. Yao T and Cohen R E2002 A cryptic protease couples deubiquitination and degradation by the proteasome;Nature (London) 419 403–407CrossRefGoogle Scholar
  148. Yen H C, Gordon C and Chang E C 2003Schizosaccharomyces pombe Int6 and Ras homologs regulate cell division and mitotic fidelity via the proteasome;Cell 112 207–217PubMedCrossRefGoogle Scholar
  149. Zaiss D M, Standera S, Holzhutter H, Kloetzel P and Sijts A J 1999 The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes;FEBSLett. 457 333–338CrossRefGoogle Scholar
  150. Zaiss D M, Standera S, Kloetzel P M and Sijts A J 2002 PI31 is a modulator of proteasome formation and antigen processing;Proc. Natl. Acad. Sci. USA 99 14344–14349PubMedCrossRefGoogle Scholar
  151. Zhang Z, Clawson A and Rechsteiner M 1998a The proteasome activator 11 S regulator or PA28. Contribution By both alpha and beta subunits to proteasome activation;J. Biol. Chem. 273 30660–30668PubMedCrossRefGoogle Scholar
  152. Zhang Z, Clawson A, Realini C, Jensen C C, Knowlton J R, Hill C P and Rechsteiner M 1998b Identification of an activation region in the proteasome activator REGalpha;Proc. Natl. Acad. Sci. USA 95 2807–2811PubMedCrossRefGoogle Scholar
  153. Zwickl P, Kleinz J and Baumeister W 1994 Critical elements in proteasome assembly;Nat. Struct. Biol. 1 765–770PubMedCrossRefGoogle Scholar
  154. Zwickl P, Ng D, Woo K M, Klenk H P and Goldberg A L 1999 An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes;J. Biol. Chem. 274 26008–26016PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2006

Authors and Affiliations

  • Dipankar Nandi
    • 1
  • Pankaj Tahiliani
    • 1
  • Anujith Kumar
    • 1
  • Dilip Chandu
    • 1
  1. 1.Department of BiochemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations