, Volume 60, Issue 1, pp 21–27 | Cite as

Cosmological constant in the Bianchi type-I-modified Brans-Dicke cosmology

  • A. K. Azad
  • J. N. Islam
Reasearch Articles


In 1961, Brans and Dicke [1] provided an interesting alternative to general relativity based on Mach’s principle. To understand the reasons leading to their field equations, we first consider homogeneous and isotropic cosmological models in the Brans-Dicke theory. Accordingly we start with the Robertson-Walker line element and the energy tensor of a perfect fluid. The scalar field φ is now a function of the cosmic time only.

Then we consider spatially homogeneous and anisotropic Bianchi type-I-cosmological solutions of modified Brans-Dicke theory containing barotropic fluid. These have been obtained by imposing a condition on the cosmological parameter Λ(φ). Again we try to focus the meaning of this cosmological term and to relate it to the time coordinate which gives us a collapse singularity or the initial singularity. On the other hand, our solution is a generalization of the solution found by Singh and Singh [2]. As far as we are aware, such solution has not been given earlier.


Cosmology cosmological constant modified Brans-Dicke cosmology 


98.80.Hw 95.30.Sf 98.80.Cq 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C Brans and R H Dicke,Phys. Rev. 124, 925 (1991)CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    T Singh and Tarekshwar Singh,J. Math. Phys. 25, 9 (1984)Google Scholar
  3. [3]
    J N Islam,An introduction to mathematical cosmology (Cambridge University Press, Cambridge, England, 1992), second edition 2001, pp. 73,74zbMATHGoogle Scholar
  4. [4]
    Y A B Zeldovich,Sov. Phys. Usp. 11, 381 (1968)CrossRefGoogle Scholar
  5. [5]
    H A Guth,Phys. Rev. D23, 347 (1981)ADSGoogle Scholar
  6. [6]
    A D Linde,Phys. Lett. B108.Google Scholar
  7. [7]
    A Albrecht and P J Steinhardt,Phys. Rev. Lett. 48, 1437 (1982)CrossRefADSGoogle Scholar
  8. [8]
    J Dreitlein,Phys. Rev. Lett. 33, 1243 (1974)CrossRefADSGoogle Scholar
  9. [9]
    S W Hawking and R Penrose,Proc. R. Soc. London A314, 529 (1970)MathSciNetADSGoogle Scholar
  10. [10]
    J N Islam,Phys. Lett. A97, 239 (1983b)MathSciNetADSGoogle Scholar
  11. [11]
    P G O Freund,Introduction to super symmetry (Cambridge University Press, Cambridge, England, 1986)Google Scholar
  12. [12]
    P G Bergmann,Inst. J. Theor. Phys. 1, 25 (1968)CrossRefGoogle Scholar
  13. [13]
    R V Wagoner,Phys. Rev. DI, 3209 (1970)ADSGoogle Scholar
  14. [14]
    M Endo and T Fukui,Gen. Relativ. Gravit. 14, 719 (1981)MathSciNetGoogle Scholar
  15. [15]
    S M Carrol and W H Press,Rev. Astron. Astrophys. 30, 499 (1992)CrossRefADSGoogle Scholar
  16. [16]
    S Weinberg,Rev. Mod. Phys. (1993)Google Scholar
  17. [17]
    S Perl Mutteret al, Nature 391, 51 (1998)CrossRefGoogle Scholar
  18. [18]
    L M Krauss,Ap. J. 501, 461 (1998)CrossRefADSGoogle Scholar
  19. [19]
    L M Krauss, Sci.Am. January (1999)Google Scholar
  20. [20]
    L M Krauss and G D Starkman, Sci.Am. November (1999)Pramana - J. Phys., Vol. 60, No. 1, January 2003 Google Scholar

Copyright information

© Indian Academy of Sciences 2003

Authors and Affiliations

  • A. K. Azad
    • 1
  • J. N. Islam
    • 1
  1. 1.Research Centre for Mathematical and Physical SciencesChittagong UniversityBangladesh

Personalised recommendations