Journal of Biosciences

, Volume 27, Issue 5, pp 465–473

Chemical waves and fibrillating hearts: Discovery by computation

  • A. T. Winfree


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bar M and Eiswirth M 1993 Turbulence due to Spiral Break-up in a Continuous Excitable Medium;Phys. Rev. E 48 1635–1637CrossRefGoogle Scholar
  2. Barkley D 1992 Linear Stability Analysis of Rotating Spiral Waves in Excitable Media;Phys. Lett. 68 2090–2093CrossRefGoogle Scholar
  3. Barkley D 1994 Euclidean Symmetry and Dynamics of Rotating Spiral Waves;Phys. Rev. Lett. 72 164–16PubMedCrossRefGoogle Scholar
  4. Barkley D 1995 Spiral Meandering; inChemical waves and patterns (eds) R Kapral and K Showalter (Dordrecht: Kluwer) pp 163–190Google Scholar
  5. Barkley D, Kness M and Tuckerman L S 1990 Spiral Wave Dynamics in a Simple Model of Excitable Media: Transition from Simple to Compound Rotation;Phys. Rev. A. 42 2489–2492PubMedCrossRefGoogle Scholar
  6. Beaumont J, Davidenko N, Davidenko J M and Jalife J 1998 Spiral Waves in Two-dimensional Models of Ventricular Muscle: Formation of a Stationary Core;Biophys. J. 75 1–14PubMedGoogle Scholar
  7. Biktashev V N and Holden A V 1998 Deterministic Brownian Motion in the Hypermeander of Spiral Waves;Physica D 116 342–354CrossRefGoogle Scholar
  8. Boissonade J, Dulos E and De Kepper P 1995 Turing Patterns: From Myth to Reality; inChemical waves and patterns (eds) R Kapral and K Showalter (Dordrecht: Kluwer) pp 221–268Google Scholar
  9. Castets V, Dulos E, Boissonade J and De KepperP 1990 Experimental evidence of a sustained standing Turing-type nonequlibrium chemical pattern;Phys. Rev. Lett. 64 2953–2956PubMedCrossRefGoogle Scholar
  10. Courtemanche M 1996 Complex Spiral Wave Dynamics in a Spatially Distributed Ionic Model of Cardiac Electrical Activity;Chaos 6 579–600PubMedCrossRefGoogle Scholar
  11. Courtemanche M and Winfree A T 1991 Re-entrant rotating waves in a Beeler-Reuter based model of two-dimensional cardiac conduction;Int. J. Bif. Chaos 1 431–444CrossRefGoogle Scholar
  12. Diks C 1996On Nonlinear Time Series Analysis: Spatiotemporal Complexity and Noise, Ph.D. dissertation, University of Leiden, The NetherlandsGoogle Scholar
  13. Diks C, Hoekstra B and Degoede J 1995 Spiral Wave Dynamics;Chaos Sol. Fract. 5 646–660Google Scholar
  14. Fenton F and Karma A 1998a Fiber-Rotation-Induced Vortex Turbulence in Thick Myocardium;Phys. Rev. Lett. 81 481–484CrossRefGoogle Scholar
  15. Fenton F and Karma A 1998b Vortex Dynamics in Three-Dimensional Continuous Myocardium with Fiber Rotation: Filament Instability and Rotation;Chaos 8 20–47PubMedCrossRefGoogle Scholar
  16. Fiedler B and Mantel R M 2000 Crossover Collision of Scroll Wave Filaments;Documenta Math. 5 695–731Google Scholar
  17. Garfinkel A, Chen P S, Walter D, Karagueuzian H, Kogan B and Weiss J 1996 Quasiperiodicity and Chaos in Cardiac Fibrillation;J. Clin. Invest. 99 305–314CrossRefGoogle Scholar
  18. Gul’ko F B and Petrov A A 1972 Mechanism of the Formation of Closed Pathways of Conduction in Excitable Media in Russian;Biofizika 17 261–270PubMedGoogle Scholar
  19. Henze C 1993Stable Organizing Centers, Ph.D. dissertation, University of Arizona, University Microfilms #9333307Google Scholar
  20. Henze C, Lugosi E and Winfree A T 1990 Stable Helical Organizing Centers in Excitable Media;Can. J. Phys. 68 683–710Google Scholar
  21. Henze C and Winfree A T 1991 A Stable Knotted Singularity in an Excitable Medium;Int. J. Bifurc. Chaos 1 891–922CrossRefGoogle Scholar
  22. Hodgkin A L and Huxley A F 1952 A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve;J. Physiol. 117 500–544PubMedGoogle Scholar
  23. Jahnke W, Skaggs W and Winfree A T 1989 Chemical vortex dynamics in the Belousov-Zhabotinsky reaction and in the 2-Variable Oregonator model;J. Phys. Chem. 93 740–749CrossRefGoogle Scholar
  24. Jahnke W and Winfree A T 1991 A survey of spiral wave behavior in the Oregonator model;Int. J. Bif. Chaos 1 445–466CrossRefGoogle Scholar
  25. Kapral R and Showalter K 1995Chemical waves and patterns (Dordrecht: Kluwer)Google Scholar
  26. Karma A 1990 Meandering Transition in Two-dimensional Excitable Media;Phys. Rev. Lett. 65 2824–2827PubMedCrossRefGoogle Scholar
  27. Koller M L, Riccio M L and Gilmour R F 1998 Dynamic Restitution of Action Potential Duration during Electrical Alternans and Ventricular Fibrillation;Am. J. Physiol. 275 H1635–1642PubMedGoogle Scholar
  28. Kuramoto Y 1984Chemical oscillations, waves and turbulence (Berlin: Springer)Google Scholar
  29. Lee K J, Cox E C and Goldstein R E 1996 Competing Patterns of Signaling Activity inDictyostelium discoideum;Phys. Rev. Lett. 76 1174–1177PubMedCrossRefGoogle Scholar
  30. Lengyel I, Kadar S and Epstein I R 1993 Transient Turing structures in a gradient-free closed system;Science 259 493–495PubMedCrossRefGoogle Scholar
  31. Lewis T J and Guevara M R 1990 Chaotic Dynamics in an Ionic Model of the Propagated Cardiac Action Potential;J. Theor. Biol. 146 407–432PubMedCrossRefGoogle Scholar
  32. Lin S F, Roth B J and Wikswo J P 1999 Quatrefoil Reentry in Myocardium: An Optical Imaging Study of the Induction Mechanism;J. Cardiovasc. Electrophysiol. 10 574–586PubMedCrossRefGoogle Scholar
  33. Lugosi E 1989 Analysis of Meandering in Zykov-Kinetics;Physica D 40 331–337CrossRefGoogle Scholar
  34. Moore T J 1995Deadly medicine (New York: Simon and Schuster)Google Scholar
  35. Nandapurkar P J 1988 Computation of Three Dimensional Waves in Supercomputers; inSimulation of wave processes in excitable media translation V S Zykov (Manchester: University Press)Google Scholar
  36. Nandapurkar P J and Winfree A T 1989 Dynamical Stability of Untwisted Scroll Rings in Excitable Media;Physica D 35 277–288CrossRefGoogle Scholar
  37. Ouyang Q, Flesselles J-M 1996 Transition from Spirals to Defect Turbulence;Nature (London)379 143–146CrossRefGoogle Scholar
  38. Ouyang Q and Swinney H L 1991 Transition from a uniform state to hexagonal and striped Turing patterns;Nature (London)352 610–612CrossRefGoogle Scholar
  39. Panfilov A V and Hogeweg P 1993 Spiral Break-up in a Modified FitzHugh-Nagumo Model;Phys. Lett. A 176 295–299CrossRefGoogle Scholar
  40. Panfilov and Holden A V 1997Computational biology of the heart (Chichester: John Wiley)Google Scholar
  41. Panfilov A V and Winfree A T 1985 Dynamical Simulations of Twisted Scroll Rings in Active Three-Dimensional Media;Physica D 17 323–330CrossRefGoogle Scholar
  42. Pertsov A M, Aliev R R and Krinsky V I 1990 Three-dimensional Twisted Vortices in an Excitable Chemical Medium;Nature (London)345 419–421CrossRefGoogle Scholar
  43. Plesser T and Muller K H 1994 Fourier Analysis of the Complex Motion of a Spiral Tip in Excitable Media;Int. J. Bif. Chaos 5 1071–1084Google Scholar
  44. Rashevsky N 1940 An Approach to the Mathematical Biophysics of Biological Self-Regulation and of Cell Polarity;Bull. Mathe. Biophys. 2 15–25CrossRefGoogle Scholar
  45. Riccio M L, Koller M L and Gilmour R F 1999 Electrical Restitution and Spatiotemporal Organization during Ventricular Fibrillation;Circ. Res. 84 955–963PubMedGoogle Scholar
  46. Rössler O E and Kahlert C 1979 Winfree Meandering in a 2-Dimensional 2-Variable Excitable Medium;Z. Naturforsch. 34 565–570Google Scholar
  47. Roth B J 1998 The Pinwheel Experiment Revisited;J. Theor. Biol. 190 389–393PubMedCrossRefGoogle Scholar
  48. Roth B J and Krassowska W 1998 The Induction of Reentry in Cardiac Tissue. The Missing Link: How Electric Fields Alter Transmembrane Potential;Chaos 8 204–220PubMedCrossRefGoogle Scholar
  49. Sepulveda N G, Roth B J and Wikswo J P 1989 Current Injection into a Two-dimensional Anisotropic Bidomain;Biophys. J. 55 987–999PubMedCrossRefGoogle Scholar
  50. Shcherbunov A I, Kukushkin N I and Sakson M Y 1973 Reverberator in a System of Interrelated Fibers Described by the Noble Equation in Russian;Biofizika 18 519–525PubMedGoogle Scholar
  51. Trayanova N, Scouibine K and Aguel F 1998 The Role of Cardiac Tissue Structure in Defibrillation;Chaos 8 221–233PubMedCrossRefGoogle Scholar
  52. Vigmond E J and Leon L J 2002 Restitution Curves and the Stability of Reentry in Three-dimensional Simulations of Cardiac Tissue;Comput. Visual. Sci. 5 1–11CrossRefGoogle Scholar
  53. Wikswo J P, Lin S-F and Abbas R A 1995 Virtual Electrodes in Cardiac Tissue: A Common Mechanism for Anodal and Cathodal Stimulation;Biophys. J. 69 2195–2210PubMedGoogle Scholar
  54. Winfree A T 1972 Spiral Waves of Chemical Activity;Science 175 634–636PubMedCrossRefGoogle Scholar
  55. Winfree A T 1973 Scroll-shaped waves of chemical activity in three dimensions;Science 181 937–939PubMedCrossRefGoogle Scholar
  56. Winfree A T 1974a Rotating Chemical Reactions;Sci. Am. 230 82–95CrossRefGoogle Scholar
  57. Winfree A T 1974b Rotating Solutions to Reaction/Diffusion Equations;S.I.A.M./A.M.S. Proc. 8 13–31 (ed. D Cohen,Am. Math. Soc.: Providence R I)Google Scholar
  58. Winfree A T 1977 Spatial and Temporal Organization in the Zhabotinsky Reaction;Adv. Biol. Med. Phys. 16 115–136 (1973Aharon Katchalsky Memorial Symposium eds J H Lawrence, J W Gofman, T L Hayes)PubMedGoogle Scholar
  59. Winfree A T 1980 The geometry of biological time (New York: Springer-Verlag) (and second edition 2001)Google Scholar
  60. Winfree A T 1985 Organizing Centers for Chemical Waves in Two and Three Dimensions; inOscillations and traveling waves in chemical systems (eds) R Field and M Burger (New York: Wiley) ch. 12, pp 441–472Google Scholar
  61. Winfree A T 1989 Electrical Instability in Cardiac Muscle: Phase Singularities and Rotors;J. Theor. Biol. 138 353–405PubMedCrossRefGoogle Scholar
  62. Winfree A T 1990 Discrete Spectrum of Rotor Periods in an Excitable Medium;Phys. Lett. A 149 203–206CrossRefGoogle Scholar
  63. Winfree A T 1991a Varieties of Spiral Wave Behavior in Excitable Media;Chaos 1 303–334PubMedCrossRefGoogle Scholar
  64. Winfree A T 1991b Alternative Stable Rotors in an Excitable Medium;Physica D 49 125–140CrossRefGoogle Scholar
  65. Winfree A T 1994a Persistent Tangled Vortex Rings in Generic Excitable Media;Nature (London)371 233–236CrossRefGoogle Scholar
  66. Winfree A T 1994b Electrical Turbulence in 3-Dimensional Heart Muscle;Science 266 1003–1006PubMedCrossRefGoogle Scholar
  67. Winfree A T 1995 Persistent Tangles of Vortex Rings in Excitable Media;Physica D 84 126–147CrossRefGoogle Scholar
  68. Winfree A T 1997 Rotors, Fibrillation, and Dimensionality; inComputational Biology of the Heart (eds) A V Panfilov and A V Holden (Chichester: John Wiley) Chapter 4, pp 101–135Google Scholar
  69. Winfree A T 1998 Evolving Perspectives during Twelve Years of Electrical Turbulence;Chaos 8 1–19PubMedCrossRefGoogle Scholar
  70. Winfree A T 2001 The geometry of biological time (New York: Springer-Verlag) (and first edition 1980)Google Scholar
  71. Winfree A T 2002 A Prime Number of Prime Questions about Vortex Dynamics in NonLinear Media; inWhere do we go from here? (eds) J Hoganet al (Bristol: Institute of Physics Press)Google Scholar
  72. Winfree A T and Guilford W 1988 The Dynamics of Organizing Centers: Numerical Experiments in Differential Geometry; inBiomathematics and related computational problems 697–716 (ed. L M Riccardi) (Dordrecht: Kluwer Academic Publishers)Google Scholar
  73. Winfree A T and Strogatz S H 1984 Organizing Centers for Three-Dimensional Chemical Waves;Nature (London)311 611–615CrossRefGoogle Scholar
  74. Zaikin A N and Zhabotinsky A M 1970 Concentration wave propagation in two-dimensional liquid-phase self-oscillating systems;Nature (London)225 535–537CrossRefGoogle Scholar
  75. Zhang H and Holden A V 1995 Spiral wave breakdown in an excitable medium model of cardiac tissue;Chaos Soliton Fractals 5 661–672CrossRefGoogle Scholar
  76. Zykov V S 1986 Cycloidal circulation of spiral waves in excitable medium;Biofizika 31 862–865Google Scholar

Copyright information

© Indian Academy of Sciences 2002

Authors and Affiliations

  • A. T. Winfree
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTuesonUSA

Personalised recommendations