Pramana

, Volume 66, Issue 2, pp 313–324

A new algorithm for anisotropic solutions

  • M. Chaisi
  • S. D. Maharaj
Article

Abstract

We establish a new algorithm that generates a new solution to the Einstein field equations, with an anisotropic matter distribution, from a seed isotropic solution. The new solution is expressed in terms of integrals of an isotropic gravitational potential; and the integration can be completed exactly for particular isotropic seed metrics. A good feature of our approach is that the anisotropic solutions necessarily have an isotropic limit. We find two examples of anisotropic solutions which generalise the isothermal sphere and the Schwarzschild interior sphere. Both examples are expressed in closed form involving elementary functions only.

Keywords

Exact solutions anisotropic spheres superdense matter 

PACS Nos

04.20.Jb 04.40.Dg 97.60.Jd 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M S R Delgaty and K Lake,Comput. Phys. Commun. 115, 395 (1998)MATHCrossRefADSMathSciNetGoogle Scholar
  2. [2]
    M R Finch and J F E Skea, Preprint available on the web: http://edradour.symbcomp.uerj.br/pubs.html (1998)Google Scholar
  3. [3]
    H Stephani, D Kramer, M A H MacCullum, C Hoenslaers and E Herlt,Exact solutions of Einstein’s field equations (Cambridge University Press, Cambridge, 2003)MATHGoogle Scholar
  4. [4]
    K Dev and M Gleiser,Gen. Relativ. Gravit. 34, 1793 (2002)MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    K Dev and M Gleiser,Gen. Relativ. Gravit. 35, 1435 (2003)MATHCrossRefADSMathSciNetGoogle Scholar
  6. [6]
    L Herrera, J Martin and J Ospino,J. Math. Phys. 43, 4889 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  7. [7]
    L Herrera, A D Prisco, J Martin, J Ospino, N O Santos and O Troconis,Phys. Rev. D69, 084026 (2004)ADSGoogle Scholar
  8. [8]
    B V Ivanov,Phys. Rev. D65, 10411 (2002)Google Scholar
  9. [9]
    M K Mak and T Harko,Chinese J. Astron. Astrophys. 2, 248 (2002)ADSCrossRefGoogle Scholar
  10. [10]
    M Mak and T Harko,Proc. R. Soc. London A459, 393 (2003)ADSMathSciNetGoogle Scholar
  11. [11]
    R Sharma and S Mukherjee,Mod. Phys. Lett. A17, 2535 (2002)ADSGoogle Scholar
  12. [12]
    S Rahman and M Visser,Class. Quantum Gravit. 19, 935 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  13. [13]
    K Lake,Phys. Rev. D67, 104015 (2003)ADSMathSciNetGoogle Scholar
  14. [14]
    D Martin and M Visser,Phys. Rev. D69, 104028 (2004)ADSMathSciNetGoogle Scholar
  15. [15]
    P Boonserm, M Visser and S Weinfurtner, arXiv:gr-qc/0503007 (2005)Google Scholar
  16. [16]
    S D Maharaj and M Chaisi,Math. Meth. Appl. Sci. 29, 67 (2006)MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    S D Maharaj and R Maartens,Gen. Relativ. Gravit. 21, 899 (1989)CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    M K Gokhroo and A L Mehra,Gen. Relativ. Gravit. 26, 75 (1994)CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    M Chaisi and S D Maharaj,Gen. Relativ. Gravit. 37, 1177 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  20. [20]
    M Chaisi and S D Maharaj,Pramana-J. Phys. to appear (2006)Google Scholar
  21. [21]
    W C Saslaw, S D Maharaj and N Dadhich,Astrophys. J. 471, 571 (1996)CrossRefADSGoogle Scholar
  22. [22]
    W C Saslaw,Gravitational physics of stellar and galactic systems (Cambridge University Press, Cambridge, 2003)Google Scholar
  23. [23]
    S Wolfram,Mathematica (Wolfram, Redwood City, 2003)Google Scholar
  24. [24]
    S D Maharaj and P G L Leach,J. Math. Phys. 37, 430 (1996)MATHCrossRefADSMathSciNetGoogle Scholar
  25. [25]
    C E Rhoades and R Ruffini,Phys. Rev. Lett. 32, 324 (1974)CrossRefADSGoogle Scholar
  26. [26]
    R L Bowers and E P T Liang,Astrophys. J. 188, 657 (1974)CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2006

Authors and Affiliations

  • M. Chaisi
    • 1
    • 2
  • S. D. Maharaj
    • 1
  1. 1.Astrophysics and Cosmology Research Unit, School of Mathematical SciencesUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.Department of Mathematics and Computer ScienceNational University of LesothoRoma 180

Personalised recommendations