Synthesis of cadmium sulphide in pure and mixed Langmuir-Blodgett films ofn-octadecylsuccinic acid
Abstract
Cadmium sulphide (CdS) nanoparticles were grown by the reaction of sodium sulphide (Na2S) with Langmuir-Blodgett (LB) films of cadmium salts ofn-octadecylsuccinic acid (ODSU) and with LB films of ODSU in mixtures of octadecylamine and octadecyl alcohol. The results indicate that heterogeneous nucleation and aggregation in the pure ODSU LB films due to processes like Ostwald ripening are destabilized by the presence of the long-chain amine and alcohol in mixed systems. CdS nanoparticles in the LB films were monitored by UV-visible absorption spectra, which allow an estimation of the size of the particles. The morphology, size and nature of the nanocrystallites formed depend on whether the sulphidation was done on the pure film or in the mixed films. It is seen that particles of size around 1.6 nm were formed in ODSU/octadecylalcohol and ODSU/ octadecylamine mixed LB films while in pure ODSU films the size was about 2.7 nm. These films showed typical needle-shaped structures, as observed by the optical microscopic technique. Mean size and morphology were confirmed by transmission and scanning electron microscopy, while selective area electron diffraction patterns showed six-fold symmetry and indicated that the CdS crystals grow epitaxially with respect to the monolayer. Further, the crystallisation enhanced in the mixed LB films showed a characteristic zinc oxide (Wurtzite) structure compared with the pure ODSU matrix.
Keywords
CdS LB films octadecylsuccinic acid epitaxyPreview
Unable to display preview. Download preview PDF.
References
- 1.Fendler J H 1994Membrane mimetic approach to advanced materials (Berlin: Springer Verlag)Google Scholar
- 2.Yang J, Meldrum F C and Fendler J H 1995J. Phys. Chem. 99 5500CrossRefGoogle Scholar
- 3.Yang J and Fendler J H 1995J. Phys. Chem. 99 5505CrossRefGoogle Scholar
- 4.Heywood B R and Mann S 1994Adv. Mater. 6 9CrossRefGoogle Scholar
- 5.Mann S 1993J. Chem. Soc, Dalton Trans. 1Google Scholar
- 6.Majewski J, Margulis L, Jacqemain D, Leveiller F, Bohm C, Arad T, Talmon Y, Lahav M and Leiserowitz L 1993Science 261 899CrossRefGoogle Scholar
- 7.Landau E M, Wolf S G, Levanon M, Leiserowitz L, Lahav M and Sagiv J 1989J. Am. Chem. Soc. 111 1436CrossRefGoogle Scholar
- 8.Majewski J, Popovitz-Biro R, Kjaer K, Als-Nielsen J, Lahav M and Leiserowitz L 1994J. Phys. Chem. 98 4987CrossRefGoogle Scholar
- 9.Landau E M, Popovitz-Biro R, Levanon M, Leiserowitz L and Sagiv J 1986J. Mol. Cryst. Liq. Cryst. 134 323CrossRefGoogle Scholar
- 10.Nabok A V, Richardson T, Davis F and Stirling C J M 1997Langmuir 13 3198CrossRefGoogle Scholar
- 11.Guo S, Popovitz-Biro R, Weissbuch I, Cohen H, Hodes G and Lahav M 1998Adv. Mater. 10 121CrossRefGoogle Scholar
- 12.Dekany L, Nagy L, Turi L, Kiraly Z, Kotov N A and Fendler J H 1996Langmuir 12 3709CrossRefGoogle Scholar
- 13.Gao M, Yang Y, Yang B, Bcan F and Shen J 1994J. Chem. Soc., Chem. Commun. 2777Google Scholar
- 14.Kang Y S, Risbud S, Rabolt J and Stroeve P 1996Langmuir 12 4345CrossRefGoogle Scholar
- 15.Ogava S, Fan F R F and Bard A J 1995J. Phys. Chem. 99 11182CrossRefGoogle Scholar
- 16.Hemakanthi G and Dhathathreyan A 1999Langmuir 15 3317CrossRefGoogle Scholar
- 17.Facci P, Erokhim V, Carrara S and Nicolini C P 1996Proc. Natl. Acad. Sci. USA 93 10556CrossRefGoogle Scholar
- 18.Collins S J, Dhathathreyan A and Ramasami T 1998J. Coll. Interf. Sci. 179 357Google Scholar
- 19.Kulish N R, Kunetz U P and Lisitsa M P 1990Ukr. Fiz. Zh. (Russian edn)35 1817Google Scholar
- 20.Narayanan K L, Vijayakumar K P, Nair K G M and Thampi N S 1997Physica B240 8Google Scholar
- 21.Kang Y S, Risbud S, Rabolt J and Stroeve P 1996Langmuir 12 4345CrossRefGoogle Scholar
- 22.Dhathathreyan A and Ramasami T 1997Philos. Mag. Lett. 76 99CrossRefGoogle Scholar