Journal of Chemical Sciences

, Volume 112, Issue 1, pp 35–42 | Cite as

Density functional studies of molecular structures of N-methyl formamide, N,N-dimethyl formamide, and N,N-dimethyl acetamide

  • V. Renugopalakrishnan
  • G. Madrid
  • G. Cuevas
  • A. T. Hagler


Density functional theory was applied to the calculation of molecular structures of N-methyl formamide (NMF), N,N-dimethyl formamide (DMF), and N,N-dimethyl acetamide (DMA). DFT calculations on NMF, DMF, and DMA were performed using a combination of the local functional of Vosko, Wilk, and Nusair (VWN) with the nonlocal exchange functional of Becke and the nonlocal correlational functional of Lee, Yang, and Parr (BLYP). The adiabatic connection method (ACM) of Becke has also been used, for the first time, for the calculation of molecular structures of NMF, DMF, and DMA. The calculated molecular structures are in excellent agreement with the experimental geometries of NMF and DMA derived from gas-phase electron-diffraction studies. Sparse experimental data on the gas-phase geometry of DMF reported in the literature compares well with the DFT results on DMF. DFT emerges as a powerful method to calculate molecular structures.


Density functional theory alkyl amides molecular structure of alkyl amides transition state search peptide models 

Abbreviations used




density functional theory


local density functional


local spin density


nonlocal functional


adiabatic connection method


N-methyl formamide


N-dimethyl formamide


N-dimethyl acetamide


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Parr R G and Yang W 1991Density functional theory of atoms and molecules (New York: Oxford University Press)Google Scholar
  2. 2.
    Labanowski J A and Andzelm W J 1991Density functional methods in chemistry (New York: Springer Verlag)Google Scholar
  3. 3.
    Zeigler T 1991Chem. Rev. 91 651CrossRefGoogle Scholar
  4. 4.
    Andzelm J W and Wimmer E 1992J. Chem. Phys. 96 1280CrossRefGoogle Scholar
  5. 5.
    Sosa C, Andzelm J, Elkin B C, Dobbs K D and Dixon J A 1992J. Phys. Chem. 96 6630CrossRefGoogle Scholar
  6. 6.
    Becke A D 1993J. Chem. Phys. 98 5648CrossRefGoogle Scholar
  7. 7.
    Raghavachari K 1984J. Chem. Phys. 81 1383CrossRefGoogle Scholar
  8. 8.
    Wiberg M A and Murcko K B 1988J. Am. Chem. Soc. 110 8029CrossRefGoogle Scholar
  9. 9.
    Miehlich B, Savin A, Stoll H and Preuss H 1989Chem. Phys. Lett. 157 200CrossRefGoogle Scholar
  10. 10.
    Kitson D H, Avbelj F, Nguyen D T, Mertz J E, Hadzi D and Hagler AT 1993Proc. Natl. Acad. Sci. USA 90 8920CrossRefGoogle Scholar
  11. 11.
    Maple J R, Hwang M J, Stockfish T P, Dinur U, Waldman M, Ewig C S and Hagler A T 1994J. Comput. Chem. 5 162CrossRefGoogle Scholar
  12. 12.
    Renugopalakrishnan V, Carey P R, Smith I C P, Huang S G and Storer A C (eds) 1991Proteins, structure. dynamics, and design, ESCOM (Leiden)Google Scholar
  13. 13.
    Axe F, Renugopalakrishnan V and Hagler A T 1998J. Chem. Res. 242Google Scholar
  14. 14.
    Axe F, Renugopalakrishnan V and Hagler A T 1998J. Chem. Res. S1Google Scholar
  15. 15.
    Cuevas G, Renugopalakrishnan V, Garduno-Juarez R and Hagler A T 1998Indian J. Chem. B37 1092Google Scholar
  16. 16.
    Cuevas G, Renugopalakrishnan V, Garduno-Juarez R and Hagler A TJ. Chem. Phys. (submitted)Google Scholar
  17. 17.
    Murray C W, Handy N C and Laming G 1993J. Mol. Phys. 78 997CrossRefGoogle Scholar
  18. 18.
    Vosoko S H, Wilk L and Nusair M 1980Can. J. Phys. 58 1200CrossRefGoogle Scholar
  19. 19.
    Becke A D 1998Phys. Rev. A38 3098Google Scholar
  20. 20.
    Lee C, Yang W and Parr R G 1998Phys. Rev. A37 785Google Scholar
  21. 21.
    Becke A D 1993J. Chem. Phys. 98 5648CrossRefGoogle Scholar
  22. 22.
    Baker L and Sheiner A 1994 Turbo DFT, Molecular Simulations Inc, San Diego, CAGoogle Scholar
  23. 23.
    Kitano M and Kuchitsu K 1974Bull. Chem. Soc. Jpn. 47 631CrossRefGoogle Scholar
  24. 24.
    Vilkov L V, Akishin P A and Presnyakova V M 1962Zh. Strukt. Khim. 3 5Google Scholar
  25. 25.
    Vilkov L V, Akishin P A and Presnyakova V M 1962J. Strukt. Chem. USSR 3 3Google Scholar
  26. 26.
    Elzaro R A 1973 Ph D thesis, Michigan State Univ., East Lansing, MI; AlsoDissert. Abstr. Int. B34 1052Google Scholar
  27. 27.
    Ohtaki H, Itoh S, Yamachi T, Ishiguro S and Rode S 1983Bull. Chem. Soc. Jpn. 56 3406CrossRefGoogle Scholar
  28. 28.
    Schnur D M, Yuh Y H and Dalton D R 1989J. Org. Chem. 54 3779CrossRefGoogle Scholar
  29. 29.
    Mack H-G and Oberhammer H 1997J. Am. Chem. Soc. 119 3567CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2000

Authors and Affiliations

  • V. Renugopalakrishnan
    • 1
  • G. Madrid
    • 2
  • G. Cuevas
    • 2
  • A. T. Hagler
    • 3
  1. 1.Harvard Medical SchoolChildren’s HospitalBostonUSA
  2. 2.Instituto de QuimicaUnivesidad Nacional Autonoma de MexicoMexico DFMexico
  3. 3.Biosym/MSI Inc.San DiegoUSA
  4. 4.Harvard Medical SchoolBostonUSA

Personalised recommendations