Journal of Chemical Sciences

, Volume 114, Issue 5, pp 513–520

Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid

  • Saikat Mandal
  • P. R. Selvakannan
  • Sumant Phadtare
  • Renu Pasricha
  • Murali Sastry


Development of reliable protocols for the synthesis of nanoparticles of well-defined sizes and good monodispersity is an important aspect of nanotechnology. In this paper, we present details of the synthesis of gold nanoparticles of good monodispersity by the reduction of aqueous chloroaurate ions by the amino acid, aspartic acid. The colloidal gold solution thus formed is extremely stable in time, indicating electrostatic stabilization via nanoparticle surface-bound amino acid molecules. This observation has been used to modulate the size of the gold nanoparticles in solution by varying the molar ratio of chloroaurate ions to aspartic acid in the reaction medium. Characterization of the aspartic acid-reduced gold nanoparticles was carried out by UV-visible spectroscopy, thermogravimetric analysis and transmission electron microscopy. The use of amino acids in the synthesis and stabilization of gold nanoparticle in water has important implications in the development of new protocols for generation of bioconjugate materials.


Gold nanoparticles reduction by amino acids surface modification bioconjugates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ozin G A 1992Adv. Mater. 4 612CrossRefGoogle Scholar
  2. 2.
    Lu L, Sui M L and Lu K 2000Science 287 1463CrossRefGoogle Scholar
  3. 3.
    Ayyappan S, Srinivasa G R, Subbanna G N and Rao C N R 1997J. Mater. Res. 12 398CrossRefGoogle Scholar
  4. 4. (a)
    Henglein A 1989Chem. Rev. 89 1861CrossRefGoogle Scholar
  5. 4. (b)
    Lewis L N 1993Chem. Rev. 93 2693CrossRefGoogle Scholar
  6. 4. (c)
    Oggawa S, Hayashi T, Kobayashi N, Tokizaki T and Nakamura A 1994Jpn. J. Appl. Phys. 33 L331CrossRefGoogle Scholar
  7. 5. (a)
    Schmid G 1994Clusters and colloids (Weinheim: VCH)Google Scholar
  8. 5. (b)
    Alivisatos A P 1996Science 271 933CrossRefGoogle Scholar
  9. 6.
    Andres R P, Bein T, Dorogi M, Feng S, Henderson J I, Kubiak C P, Mahoney W, Osifchin R G and Reifenberger R 1996Science 272 1323CrossRefGoogle Scholar
  10. 7.
    Galletto P, Brevet P F, Girault H H, Antoine R and Broyer M 1999J. Phys. Chem. B103 8706Google Scholar
  11. 8.
    Mirkin C A, Letsinger R L, Mucic R C and Storhoff J J 1996Nature (London)382 607CrossRefGoogle Scholar
  12. 9. (a)
    Hayat M A 1991Colloidal gold (San Diego, CA: Academic Press)Google Scholar
  13. 9. (b)
    Bradley J S 1994Clusters and colloids (Weinheim: VCH) pp 459–544Google Scholar
  14. 10. (a)
    Jana N R, Gearheart C and Murphy C 2001J. Phys. Chem. B105 4065Google Scholar
  15. 10. (b)
    Dujardin S, Mann, S, Hsin L B and Wang C R C 2001Chem. Commun. 1264Google Scholar
  16. 10. (c)
    Malikova N, Pastoriza-Santos I, Schierhorn M, Kotov N A and Liz-Marzan L M 2002Langmuir 18 3694CrossRefGoogle Scholar
  17. 10. (d)
    Jin R, Cao Y, Mirkin C A, Kelly K L, Schatz G C and Zheng J G 2001Science 294 1901CrossRefGoogle Scholar
  18. 11. (a)
    Brust M, Walker M, Bethell D, Schiffrin D J and Whymann R 1994J. Chem. Soc, Chem. Commun. 801Google Scholar
  19. 11. (b)
    Fink J, Kiely C J, Bethell D and Schiffrin D J 1998Chem. Mater. 10 922CrossRefGoogle Scholar
  20. 12.
    Leff D V, Brandt L and Heath J R 1996Langmuir 12 4723CrossRefGoogle Scholar
  21. 13. (a)
    Wang Z L 1998Adv. Mater. 10 13, and references thereinCrossRefGoogle Scholar
  22. 13. (b)
    Murray C B, Kagan C R and Bawendi M G 1995Science 270 1335CrossRefGoogle Scholar
  23. 13. (c)
    Vijaya Sarathy K, Kulkarni G U and Rao C N R 1997J. Chem. Soc, Chem. Commun. 537Google Scholar
  24. 14. (a)
    Templeton A C, Hostetler M J, Kraft C T and Murray R W 1998J. Am. Chem. Soc. 120 1906CrossRefGoogle Scholar
  25. 14. (b)
    Templeton A C, Hostetler M J, Warmoth E K, Chen S, Hartshorn C M, Krishna-murthy V M, Forbes D E and Murray R W 1998J. Am. Chem. Soc. 120 4845CrossRefGoogle Scholar
  26. 15.
    Niemeyer C M 2001Angew. Chem., Int. Ed. 40 4128CrossRefGoogle Scholar
  27. 16.
    Sastry M, Kumar A and Mukherjee P 2001Colloid. Surf. A181 255Google Scholar
  28. 17.
    Mandal S, Selvakannan PR, Kumar A, Pasticha R, Mandale A B, Adyantaya S D and Sastry M (manuscript in preparation)Google Scholar
  29. 18.
    Mulvaney P 1996Langmuir 12 788CrossRefGoogle Scholar
  30. 19. (a)
    Mayya K S, Patil V and Sastry M 1997Langmuir 13 3944CrossRefGoogle Scholar
  31. 19. (b)
    Storhoff J J, Elghanian R, Mucic R C, Mirkin C A and Letsinger R L 1998J. Am. Chem. Soc. 120 1959CrossRefGoogle Scholar
  32. 20.
    Sastry M, Lala N, Patil V, Chavan S P and Chittiboyina A G 1998Langmuir 14 4138CrossRefGoogle Scholar
  33. 21. (a)
    Cliffel D E, Zamborini F P, Gross S M and Murray R W 2000Langmuir 16 9699CrossRefGoogle Scholar
  34. 21. (b)
    Yonezawa T, Onoue S and Kimizuka N 2000Langmuir 16 5218CrossRefGoogle Scholar
  35. 21. (c)
    Shon Y S, Wuelfing W P and Murray R W 2000Langmuir 17 1255CrossRefGoogle Scholar
  36. 21. (d)
    Schaff T G, Knight G, Shaffigulin M N, Borkman R F and Whetten R L 1998J. Phys. Chem. B102 10643Google Scholar

Copyright information

© Indian Academy of Sciences 2002

Authors and Affiliations

  • Saikat Mandal
    • 1
  • P. R. Selvakannan
    • 1
  • Sumant Phadtare
    • 1
  • Renu Pasricha
    • 1
  • Murali Sastry
    • 1
  1. 1.Materials Chemistry DivisionNational Chemical LaboratoryPuneIndia

Personalised recommendations