Advertisement

Pramana

, Volume 64, Issue 6, pp 829–846 | Cite as

The analytic structure of lattice models — why can’t we solve most models?

  • Anthony J. Guttmann
Article

Abstract

We investigate the solvability of a variety of well-known problems in lattice statistical mechanics. We provide a new numerical procedure which enables one to conjecture whether the solution falls into a class of functions calleddifferentiably finite functions. Almost all solved problems fall into this class. The fact that one can conjecture whether a given problem is or is not D-finite then informs one as to whether the solution is likely to be tractable or not. We also show how, for certain problems, it is possible to prove that the solutions are notD-finite, based on the work of Rechnitzer [1–3].

Keywords

Solvability differentiably finite bond animal Ising model susceptibility self-avoiding walks self-avoiding polygons 

PACS Nos

05.50.+q 02.90.+p 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A Rechnitzer,Adv. Appl. Math. 30, 228 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    A Rechnitzer, Haruspicy 2: The self-avoiding polygon generating function is not Definite, accepted for publication inJ. Combinatorial Theory-Series A Google Scholar
  3. [3]
    A Rechnitzer, Haruspicy 3: The directed bond-animal generating function is not D-finite, to appear inJ. Combinatorial Theory-Series A Google Scholar
  4. [4]
    L Onsager,Phys. Rev. 65, 117 (1944)zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. [5]
    C N Yang,Phys. Rev. 85, 808 (1952)zbMATHCrossRefADSGoogle Scholar
  6. [6]
    P W Kasteleyn,Physica 27, 1209 (1961)CrossRefADSGoogle Scholar
  7. [7]
    M E Fisher,Phys. Rev. 124, 1644 (1961)ADSGoogle Scholar
  8. [8]
    E H Lieb,Phys. Rev. Lett. 18, 1046 (1967)CrossRefADSGoogle Scholar
  9. [9]
    R J Baxter,Phys. Rev. Lett. 26, 834 (1971)CrossRefADSGoogle Scholar
  10. [10]
    R J Baxter,J. Phys. A13, L61 (1980)ADSMathSciNetGoogle Scholar
  11. [11]
    GFUN, a program developed by B Salvy, P Zimmerman, F Chyzak and colleagues at INRIA, France. Available from http://pauillac.inria.fr/algoGoogle Scholar
  12. [12]
    A J Guttmann, Asymptotic Analysis of Power Series Expansions, inPhase transitions and critical phenomena, edited C Domb and J Lebowitz (Academic Press, 1989) vol. 13, pp. 1–234Google Scholar
  13. [13]
    T de Neef and I G Enting,J. Phys. A10, 801 (1977)ADSGoogle Scholar
  14. [14]
    I G Enting,Nucl. Phys. B47, 180 (1996)Google Scholar
  15. [15]
    I Jensen and A J Guttmann,J. Phys. A32, 4867 (1999)ADSMathSciNetGoogle Scholar
  16. [16]
    I Jensen,J. Phys. A37, 5503 (2004)ADSGoogle Scholar
  17. [17]
    W P Orrick, B Nickel, A J Guttmann and J H H Perk,Phys. Rev. Lett. 86, 4120 (2001)CrossRefADSGoogle Scholar
  18. [18]
    W P Orrick, B Nickel, A J Guttmann and J H H Perk,J. Stat. Phys. 102, 795 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    R J Baxter,Exactly solved models in statistical mechanics (Academic Press, London, 1982)zbMATHGoogle Scholar
  20. [20]
    J M Hammersley,Proc. Camb. Phil. Soc. 57, 516 (1961)zbMATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    J M Hammersley and D J A Welsh,Q. J. Math. 2nd series (Oxford, 1962) vol.13, pp. 108–10zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    R P Stanley,Enumerative combinatorics Vol. 2, volume 62 ofCambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 1999)Google Scholar
  23. [23]
    A J Guttmann and I Jensen (in preparation)Google Scholar
  24. [24]
    R J Baxter, inFundamental Problems in Statistical Mechanics edited by E G D Cohen (North Holland, Amsterdam 1981) vol. 5, pp. 109–41Google Scholar
  25. [25]
    R J Baxter,J. Stat. Phys. 28, 1 (1982)CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    A J Guttmann and I G Enting,Phys. Rev. Letts 76, 344 (1996)zbMATHCrossRefADSMathSciNetGoogle Scholar
  27. [27]
    H N V Temperley,Phys. Rev. 103, 1 (1956)zbMATHCrossRefADSMathSciNetGoogle Scholar
  28. [28]
    M Bousquet-Mélou,Disc. Math. 154, 1 (1996)zbMATHCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  • Anthony J. Guttmann
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of MelbourneAustralia

Personalised recommendations