Bulletin of Materials Science

, Volume 25, Issue 4, pp 351–354 | Cite as

Infrared absorption spectroscopic study of Nd3+ substituted Zn-Mg ferrites

  • B. P. Ladgaonkar
  • C. B. Kolekar
  • A. S. Vaingankar
Article

Abstract

Compositions of polycrystalline ZnxMg1−xFe2−yNdyO4 (x = 0.00, 0.20, 0.40, 0.60, 0.80 and 1.00;y = 0.00, 0.05 and 0.10) ferrites were prepared by standard ceramic method and characterized by X-ray diffraction, scanning electron microscopy and infrared absorption spectroscopy. Far infrared absorption spectra show two significant absorption bands, first at about 600 cm−1 and second at about 425 cm−−1, which were respectively attributed to tetrahedral (A) and octahedral (B) sites of the spinel. The positions of bands are found to be composition dependent. The force constants,KT andKO, were calculated and plotted against zinc concentration. Compositional dependence of force constants is explained on the basis of cation-oxygen bond distances of respective sites and cation distribution.

Keywords

Polycrystalline ferrites rare earth IR absorption cation distribution force constants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braber V A M 1969Phys. Status Solidi 33 563CrossRefGoogle Scholar
  2. El Hitti M A, El Shora A J, Seoud A S and Hammad S M 1996Phase Trans. 56 35CrossRefGoogle Scholar
  3. Ghatage A K, Choudhari S C, Patil S A and Paranjape S K 1996J. Mater. Sci. Lett. 15 1548CrossRefGoogle Scholar
  4. Ishil M, Nakahita M and Yamanka T 1972Solid State Commun. 11 209CrossRefGoogle Scholar
  5. Josyulu O S and Sobhanadri J 1981Phys. Status Solidi (bda)65 479CrossRefGoogle Scholar
  6. Kolekar C B, Kamble P N and Vaingankar AS 1994Indian J. Phys. 68(A) 529Google Scholar
  7. Ladgaonkar B P 2000Crystallographic, electrical and magnetic study of Nd3+ substituted Zn-Mg ferrites, Ph. D. Thesis, Shivaji University, KolhapurGoogle Scholar
  8. Ladgaonkar B P and Vaingankar A S 1998Mater. Chem. Phys. 56 280CrossRefGoogle Scholar
  9. Ladgaonkar B P, Vasambekar P N and Vaingankar A S 2000aJ. Magn. & Magn. Mater. 210 289CrossRefGoogle Scholar
  10. Ladgaonkar B P, Vasambekar P N and Vaingankar A S 2000bMater. Sci. Lett. 19 1375CrossRefGoogle Scholar
  11. Ladgaonkar B P, Vasambekar P N and Vaingankar A S 2001Indian J. Phys. 75(A) 351Google Scholar
  12. Liene B F 1973Phys. Rev. 37 2591Google Scholar
  13. Murthy V R K, Chitra Sonkar S, Reddy K V and Sobhanadri J 1978Indian J. Pure & Appl. Phys. 16 79Google Scholar
  14. Nathwani P and Darshane V S 1987Pramana-J. Phys. 28 675CrossRefGoogle Scholar
  15. Preudhomme J and Tarte P 1971Spectrochim Acta A27 961Google Scholar
  16. Srivastav C M and Srinivasan T T 1982J. Appl. Phys. 53 8148CrossRefGoogle Scholar
  17. Woldron R D 1955Phys. Rev. 99 1727CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2002

Authors and Affiliations

  • B. P. Ladgaonkar
    • 1
  • C. B. Kolekar
    • 1
  • A. S. Vaingankar
    • 1
    • 2
  1. 1.Department of ElectronicsShankarrao Mohite MahavidyalayaAkluj District, SolapurIndia
  2. 2.Department of ElectronicsShivaji UniversityKolhapurIndia

Personalised recommendations