Skip to main content
Log in

High-Ti type N-MORB parentage of basalts from the south Andaman ophiolite suite, India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

A complete dismembered sequence of ophiolite is well exposed in the south Andaman region that mainly comprises ultramafic cumulates, serpentinite mafic plutonic and dyke rocks, pillow lava, radiolarian chert, and plagiogranite. Pillow lavas of basaltic composition occupy a major part of the Andaman ophiolite suite (AOS). These basalts are well exposed all along the east coast of southern part of the south AOS. Although these basalts are altered due to low-grade metamorphism and late hydrothermal processes, their igneous textures are still preserved. These basalts are mostly either aphyric or phyric in nature. Aphyric type exhibits intersertal or variolitic textures, whereas phyric variety shows porphyritic or sub-ophitic textures. The content of alkalies and silica classify these basalts as sub-alkaline basalts and alkaline basalts. A few samples show basaltic andesite, trachy-basalt, or basanitic chemical composition. High-field strength element (HFSE) geochemistry suggests that studied basalt samples are probably derived from similar parental magmas. Al2O3/TiO2 and CaO/TiO2 ratios classify these basalts as high-Ti type basalt. On the basis of these ratios and many discriminant functions and diagrams, it is suggested that the studied basalts, associated with Andaman ophiolite suite, were derived from magma similar to N-MORB and emplaced in the mid-oceanic ridge tectonic setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal S, Guevara M and Verma S P 2004 Discriminant analysis applied to establish major element field boundaries for tectonic varieties of basic rocks;Int. Geol. Rev. 46 575–594

    Google Scholar 

  • Coleman R G 1977Ophiolites: Ancient Oceanic Lithosphere (Berlin: Springer Verlag)

    Google Scholar 

  • Church W R and Coish R A 1976 Oceanic versus island-arc origin of ophiolites;Earth Planet. Sci. Lett. 31 8–14

    Article  Google Scholar 

  • Floyd P A and Winchester J A 1978 Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements;Chem. Geol. 21 291–306

    Article  Google Scholar 

  • Govindaraju K 1994 1994: compilation of working values and descriptions for 383 Geostandards.Geostandards Newsletter 18 1–158

    Google Scholar 

  • Haldar D 1984 Some aspects of the Andaman ophiolite complex;Record Geol. Surv. India 115 1–11

    Google Scholar 

  • Hamilton W 1978Tectonic map of the Indonesian region. Folio of the Indonesian Region Map I-875-D, Department of the Interior; US Geological Survey

  • Irvine T N and Baragar W R A 1971 A guide to the chemical classification of the common volcanic rocks;Canadian J. Earth Sci. 8 523–548

    Google Scholar 

  • Jochum K P and Verma S P 1996 Extreme enrichment of Sb, Tl, and other trace elements in altered MORB;Chem. Geol. 130 289–299

    Article  Google Scholar 

  • Karunakaran C, Ray K K, Sen C R and Saha S S 1968 Tertiary sedimentation in the Andaman-Nicobar geosyncline;J. Geol. Soc. India 9 32–39

    Google Scholar 

  • Lechler P J and Desilets M O 1987 A review of the use of loss on ignition as a measurement of total volatiles in whole rock analysis;Chem. Geol. 63 341–344

    Article  Google Scholar 

  • Le Bas M J, Le Maitre R W, Streckeisen A and Zanettin B 1986 A chemical classification of volcanic rocks on the total alkali-silica diagram;J. Petrol. 27 745–750

    Google Scholar 

  • Le Maitre R W 2002Igneous Rocks: A classification and glossary of terms (Cambridge: Cambridge University Press) 236 p

    Google Scholar 

  • Ling Y H, Chandra R and Karkare S G 1996 Tectonic significance of Eocene and Cretaceous radiolaria from south Andaman Islands, northeast Indian Ocean;The Island Arc 5 166–179

    Article  Google Scholar 

  • Longerich H P 1995 Analysis of pressed pellets of geological samples using wavelength dispersive X-ray fluorescence;X-ray Spectrometry 24 123–136

    Article  Google Scholar 

  • MacDonald G A and Katsura T 1964 Chemical composition of Hawaiian lavas;J. Petrol. 5 83–133

    Google Scholar 

  • Middlemost E A K 1989 Iron oxidation ratios, norms and the classification of volcanic rocks;Chem. Geol. 77 19–26

    Article  Google Scholar 

  • Miyashiro A 1973 The Troodos ophiolitic complex was probably formed in an island arc;Earth Planet. Sci. Lett. 19 218–224

    Article  Google Scholar 

  • Pearce J A 1983 Role of sub-continental lithosphere in magma genesis at active continental margins. In:Continental Basalts and Mantle Xenoliths (eds C J Hawkesworth and M J Norry), Shiva, Nantwich, pp 230–249

    Google Scholar 

  • Pearce J A and Cann J R 1971 Ophiolite origin investigated by discriminant analysis using Ti, Zr and Y;Earth Planet. Sci. Lett. 12 339–349

    Article  Google Scholar 

  • Pearce J A and Cann J R 1973 Tectonic setting of basic volcanic rocks determined using trace element analysis;Earth Planet. Sci. Lett. 19 290–300

    Article  Google Scholar 

  • Ray K K, Sengupta S and Van den Hul H J 1988 Chemical characters of volcanic rocks from Andaman ophiolite, India;J. Geol. Soc. London 145 393–400

    Google Scholar 

  • Rollinson H 1993Using geochemical data: evolution, presentation, interpretation; Longman Scientific & Technical, UK, 344 p

    Google Scholar 

  • Saunders A D and Tarney J 1984 Geochemical characteristics of basaltic volcanism within back-arc basins; In:Marginal Basin Geology (eds B P Kokelaar and M F Howells),Spec. Publ. Geol. Soc. London 16 59–76

  • Seewald J S and Seyfried W E 1990 The effect of temperature on metal mobility in sub-seafloor hydrothermal systems: constraints from basalt alteration experiments;Earth Planet. Sci. Lett. 101 388–403

    Article  Google Scholar 

  • Shastry A, Srivastava Rajesh K, Chandra R and Jenner G A 2001 Fe-Ti enriched mafic rocks from south Andaman ophiolite suite: implication of late stage liquid immiscibility;Curr. Sci. 80 453–454

    Google Scholar 

  • Shastry A, Srivastava Rajesh K, Chandra R and Jenner G A 2002 Geochemical characteristics and genesis of oceanic plagiogranites associated with south Andaman Ophiolite Suite, India: a late stage silicate liquid immiscible product;J. Geol. Soc. India 59 233–241

    Google Scholar 

  • Sheth H C, Torres-Alvarado I S and Verma S P 2002 What is the “calc-alkaline rock series”?;Int. Geol. Rev. 44 686–701

    Google Scholar 

  • Shervais J W 1982 Ti-V plots and the petrogenesis of modern and ophiolitic lavas;Earth Planet. Sci. Lett. 59 101–118

    Article  Google Scholar 

  • Sun S-S 1980 Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs;Phil. Trans. R. Soc. A297 409–445

    Google Scholar 

  • Sun S-S and Nesbitt R W 1977 Chemical heterogeneity of the Archaean mantle, composition of the earth and mantle evolution;Earth Planet. Sci. Lett. 35 429–448

    Article  Google Scholar 

  • Sun S-S and Nesbitt R W 1978 Geochemical regularities and genetic significance of ophiolitic basalts;Geology 28 689–693

    Article  Google Scholar 

  • Torres-Alvarado I S, Verma S P, Palacios-Berruete H, Guevara M and González-Castillo O Y 2003 DC_BASE: a database system to manage Nernst distribution coefficients and its application to partial melting modeling;Comput. Geosci. 29 1191–1198

    Article  Google Scholar 

  • Vasconcelos F M, Verma S P and Vargas B R C 2001 Diagrama Ti-V: una nueva propuesta de discriminación para magmas básicos en cinco ambientes tectónicos;Rev. Mex. Cienc. Geol. 18 162–174

    Google Scholar 

  • Verma S P 1992 Seawater alteration effects on REE, K, Rb, Cs, Sr, U, Th, Pb, and Sr-Nd-Pb isotope systematics of mid-ocean ridge basalts;Geochem. J. 26 159–177

    Google Scholar 

  • Verma S P 2004 Solely extension-related origin of the eastern to west-central Mexican Volcanic Belt (Mexico) from partial melting inversion model;Curr. Sci. 86 713–719

    Google Scholar 

  • Verma S P, Torres-Alvarado I S and Sotelo-Rodríguez Z T 2002 SINCLAS: standard igneous norm and volcanic rock classification system;Comput. Geosci. 28 711–715

    Article  Google Scholar 

  • Verma S P, Torres-Alvarado I S and Velasco-Tapia F 2003 A revised CIPW norm;Schweiz. Miner. Petrog. Mitteil. 83 197–216

    Google Scholar 

  • Vohra C P, Haldar D and Ghosh Roy A K 1989 The Andaman-Nicobar ophiolite complex and associated mineral resources—current appraisal; In:Phanerozoic Ophiolites of India (ed. N C G hose), Sumna Publ. & Distib., Patna, pp 281–315

    Google Scholar 

  • Winchester J A and Floyd P A 1976 Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks;Earth Planet. Sci. Lett. 28 459–469

    Article  Google Scholar 

  • Winchester J A and Floyd P A 1977 Geochemical discrimination of different magma series and their differentiation products using immobile elements;Chem. Geol. 20 325–344

    Article  Google Scholar 

  • Winter J D 2001Igneous and Metamorphic Petrology (New Jersey: Prentice Hall) 697 pp

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, R.K., Chandra, R. & Shastry, A. High-Ti type N-MORB parentage of basalts from the south Andaman ophiolite suite, India. J Earth Syst Sci 113, 605–618 (2004). https://doi.org/10.1007/BF02704025

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704025

Keywords

Navigation