Journal of Earth System Science

, Volume 114, Issue 3, pp 375–380 | Cite as

Nanophase Fe0 in lunar soils

  • Abhijit Basu


Back scattered electron and transmission electron imaging of lunar soil grains reveal an abundance of submicrometer-sized pure Fe0 globules that occur in the rinds of many soil grains and in the submillimeter sized vesicular glass-cemented grains called agglutinates. Grain rinds are amorphous silicates that were deposited on grains exposed at the lunar surface from transient vapors produced by hypervelocity micrometeorite impacts. Fe0 may have dissociated from Fe-compounds in a high temperature (>3000°C) vapor phase and then condensed as globules on grain surfaces. The agglutinitic glass is a quenched product of silicate melts, also produced by micrometeorite impacts on lunar soils. Reduction by solar wind hydrogen in agglutinitic melts may have produced immiscible droplets that solidified as globules. The exact mechanism of formation of such Fe0 globules in lunar soils remains unresolved.


Moon regolith micrometeorite impact agglutinate vapor deposit SEM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen C C, Morris R V and Mckay D S 1994 Experimental reduction of lunar mare soil and volcanic glass;JGR-Planets 99 23,173–23,185.Google Scholar
  2. Allen C C, Morris R V and McKay D S 1996 Oxygen extraction from lunar soils and pyroclastic glass;JGR-Planets 101 26,085–26,095.Google Scholar
  3. Arnold J R 1975 A Monte Carlo model for the gardening of the lunar regolith;The Moon 13 159–172.CrossRefGoogle Scholar
  4. Basu A 1977 Steady state, exposure age and growth of agglutinates in lunar soils;Proc. Lunar Sci. Conf. 8th, Pp. 3617-3632.Google Scholar
  5. Basu A and Meinschein W G 1976 Agglutinates and carbon accumulation in Apollo 17 lunar soils;Proc. Lunar Sci. Conf. 7th, Pp. 337-369.Google Scholar
  6. Bhandari N and Shah V G 1979 Potassium-rich globules in the Luna-20 soil;Proceedings Indian National Acad. Sci. (Part A),45(3) 5–6.Google Scholar
  7. Bean A L, Conrad C C Jr. and Gordon R F 1970 Crew observations; Apollo 12 Preliminary Science Report, NASA SP-235, Pp. 29–38.Google Scholar
  8. Chanda S K 1963 Cementation and diagenesis of the Lameta beds, Lametaghat MP, India;J. Sed. Pet. 33 728–738.Google Scholar
  9. Christofferson R, Keller L P and McKay D S 1996 Microstructure, chemistry, and origin of grain rims on ilmenite from the lunar soil finest fraction;Meteoritics Planet. Sci. 31 835–848.Google Scholar
  10. Cintala M J 1992 Impact-induced thermal effects in the lunar and Mercurian regoliths;JGR-Planets 97 947–973.Google Scholar
  11. Clanton U S, McKay D S, Laughon R B and Ladle G H 1973 Iron crystals in lunar breccias;Proc. Lunar Sci. Conf. 4th, Pp. 925-931.Google Scholar
  12. Cloud P, Margolis S V, Moorman M, Barker J M, Licari G R, Krinsley D and Barnes V E 1970, Micromorphology and surface characteristics of lunar dust and breccia;Science 167 776–778.CrossRefGoogle Scholar
  13. Crawford D A and Schultz P H 1999 Electromagnetic properties of impact-generated plasma, vapor and debris;Int. J. Impact Eng. 23 160–180.Google Scholar
  14. Hapke B 1975 Effects of vapor-phase deposition processes of the optical, chemical, and magnetic properties of the lunar regolith;The Moon 13 339–353.CrossRefGoogle Scholar
  15. Hapke B 2001 Space weathering from Mercury to the asteroid belt;JGR-Planets 106 10,039–10,073.Google Scholar
  16. Heiken G, Vaniman D and French B M (eds) 1991, Lunar Sourcebook, Cambridge, Cambridge University Press, p. 736.Google Scholar
  17. Housley R M, Cirlin E H, Paton N E and Goldberg I B 1974 Solar wind and micrometeorite alteration of the lunar regolith;Proc. Lunar Sci. Conf. 5th, Pp. 2623-2642.Google Scholar
  18. Housley R M, Grant R W and Abdel-Gawad M 1972 Study of excess Fe metal in the lunar fines by magnetic separation, Mossbauer spectroscopy, and microscopic examination.Proc. Lunar Sci. Conf. 3rd, Pp. 1065-1076.Google Scholar
  19. James C, Basu A, Wentworth S J and McKay D S 2001 Grain size distribution of Fe0 globules in lunar agglutinitic glass: first results from Apollo 17 soil 78421;Geol. Soc. Am., Abstr. Prog. 33 A311.Google Scholar
  20. James C, Letsinger S, Basu A, Wentworth S J and McKay D S 2002 Size distribution of Fe0 globules in lunar agglutinitic glass; Lunar Planet. Sci. Conf. XXXIII, Abstract # 1827 (CD-ROM).Google Scholar
  21. Keller L P and Clemmet S J 2001 Formation of nanophase iron in the lunar regolith: Lunar Planet. Sci. XXXII, Abstract # 2097 (CD-ROM).Google Scholar
  22. Keller L P and McKay D S 1993 Discovery of vapor deposits in the lunar regolith;Science 261 1305–1307.CrossRefGoogle Scholar
  23. Keller L P and McKay D S 1992 Micrometer-sized glass spheres in Apollo 16 soil 61181; implications for impact volatilization and condensation:Proc. of the Lunar and Planetary Sci. Conf. 22nd,22 137–141.Google Scholar
  24. Keller L P and McKay D S 1997 The nature and origin of rims on lunar soil grains;Geochim. et Cosmochim. Acta 61 1–11.CrossRefGoogle Scholar
  25. Khan A and Mosegaard K 2001 New information on the deep lunar interior from an inversion of lunar free oscillation periods;Geophys. Res. Lett. 28 1791–1794.CrossRefGoogle Scholar
  26. Khan A, Mosegaard K and Rasmussen K L 2000 A new seismic velocity model for the Moon from a Monte Carlo inversion of the Apollo lunar seismic data;Geophys. Res. Lett. 27 1591–1594.CrossRefGoogle Scholar
  27. Margolis S V, Barnes V, Cloud P and Fisher R V 1971 Surface micrography of lunar fines compared with tektites and terrestrial volcanic analogs;Proc. of the Lunar Sci. Conf. 2nd, Pp. 909-921.Google Scholar
  28. McKay D S and Basu A 1983 The production curve for agglutinates in planetary regoliths;Proc. Lunar Sci. Conf. 14th, Pp. B193–B199.Google Scholar
  29. McKay D S, Fruland R M and Heiken G H 1974 Grain size and evolution of lunar soils;Proc. Lunar Sci. Conf. 5th, Pp. 887–906.Google Scholar
  30. McKay D S, Heiken G H, Basu A, Blanford G, Simon S, Reedy R, French B M and Papike J J 1991 The lunar regolith; In: Lunar Sourcebook, Heiken G H, Vaniman D and French B (eds), Cambridge, Cambridge University Press, Pp. 285–356.Google Scholar
  31. Morris R V 1977 Origin and evolution of the grain-size dependence of the concentration of fine-grained metal in lunar soils: the maturation of lunar soils to a steady-state stage:Proc. Lunar Sci. Conf. 8th, Pp. 3719-3748.Google Scholar
  32. Morris R V 1980 Origins and size distribution of metallic iron particles in the lunar regolith;Proc. Lunar Planet. Sci. Conf. 11th, Pp. 1697–1712.Google Scholar
  33. Schaal R B and Horz F 1977 Shock metamorphism of lunar and terrestrial basalts;Proc. Lunar Planet Sci. Conf. 8th,Geochim. Cosmochim. Acta., Pp. 1697-1729.Google Scholar
  34. Schultz P H 1996 Effect of impact angle on vaporization;JGR-Planets 101 21,117–21,136.Google Scholar
  35. Spudis P D 1996 The Once and Future Moon, Washington, Smithsonian, p. 308.Google Scholar
  36. Sugita S and Schultz P H 1999 Spectroscopic characterization of hypervelocity jetting: comparison with a standard theory;JGR-Planets 104 30,825–30,845.Google Scholar
  37. Stöffler D, Gault D E, Wedekind J and Polkowski G 1975 Experimental hypervelocity impact into quartz sand: Distribution and shock metamorphism of ejecta;JGR 80 4062–4077.Google Scholar
  38. Taylor S R 1982 Planetary Science: A Lunar Perspective. LPI, Houston, U.S.A., p. 481.Google Scholar
  39. Taylor L A and Cirlin E-H 1985 A review of ESR studies on lunar samples; In: ESR Dating and Dosimetry, Ikeya M and Miki T (eds) Tokyo, IONICS, Pp. 19–29.Google Scholar
  40. Yakovlev O I, Dikov Yu P, Gerasimov M V, Wlotzka F and Huth J 2002 The behavior of Pt in silicate melts during impact-simulated high temperature heating; Lunar Planet. Sci. XXXIII Abstract # 1271 (CD-ROM).Google Scholar

Copyright information

© Printed in India 2005

Authors and Affiliations

  • Abhijit Basu
    • 1
  1. 1.Department of Geological SciencesIndiana UniversityBloomingtonUSA

Personalised recommendations