Advertisement

Journal of Earth System Science

, Volume 114, Issue 3, pp 369–374 | Cite as

Nannobacteria and the formation of framboidal pyrite: Textural evidence

  • Robert L Folk
Article

Abstract

Study of sedimentary pyrite in the form of framboids, euhedral crystals or metasomatic masses has revealed that their surfaces are commonly covered with spheroids of about 50 nm. This applies to all the examples studied, from modern to Proterozoic. These spheroids are interpreted as the pyritized corpses of nannobacterial cells; if correct, this indicates that precipitation of iron sulfide was performed by these dwarf forms of bacteria, often associated with decaying organic matter.

Keywords

Nannobacteria pyrite framboid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariztegui D and Dobson J 1996 Magnetic Investigation of Framboidal Greigite Formation, Lake St. Moritz, Switzerland;The Holocene 6 235–241.Google Scholar
  2. Bang B S 1994 Framboidal Pyrite and Associated Organic Matrices; In:Surface Treatment: Cleaning, stabilization and coatings, Kejser U B (ed.) Geol. Museum, Univ. Copenhagen, Contr. to Geol., #735, 65–82.Google Scholar
  3. Bates T F and Strahl E O 1957 Mineralogy, Petrography and Radioactivity of Representative Samples of Chattanooga Shale;Bull. Geol. Soc. America 68 1305–1314.CrossRefGoogle Scholar
  4. Clark G R II and Lutz R A 1980 Pyritization in the Shells of Living Bivalves;Geol. 8 268–271.CrossRefGoogle Scholar
  5. Donald R and Southam G 1999 Low Temperature Anaerobic Bacterial Diagenesis of Ferrous Monosulfide to Pyrite;Geoch. Cosm. Acta. 63 2019–2023.CrossRefGoogle Scholar
  6. Folk R L 1993 SEM Imaging of Bacteria and Nannobacteria in Carbonate Sediments and Rocks;J. Sed. Petrol. 63 990–999.Google Scholar
  7. Folk R L 1998 Nannobacteria and the Precipitation of Pyrite as Framboids and Larger Crystals: Some Comparisons with Copper Minerals (abs.) SE section;Geol. Soc. Amer. (Charleston, WV)30 12.Google Scholar
  8. Folk R L and Chafetz H S 2000 Bacterially Induced Microscale and Nanoscale Carbonate Precipitates; In:Microbial Sediments, Robert E Riding and Stanley M Awramik (eds) (Berlin: Springer Verlag) Pp. 40–49.Google Scholar
  9. Folk R L, Kirkland B L, Rodgers J C, Rodgers G P, Rasmussen T E, Lieske C, Charlesworth J E, Severson S R and Miller V M 2001 Precipitation of minerals in human arterial plaque: the potential role of nannobacteria (abs);Geol. Soc. America Ann. Mtg. Boston 33(6) 189.Google Scholar
  10. Folk R L and Lynch F L 1997a Nannobacteria are Alive on Earth as well as Mars;Proc. SPIE 3111 406–419.CrossRefGoogle Scholar
  11. Folk R L and Lynch F L 1997b The Possible Role of Nannobacteria (dwarf bacteria) in Clay Mineral Diagenesis and the Importance of Careful Sample Preparation in High Magnification SEM study;J. Sed. Res. 67 583–589.Google Scholar
  12. Folk R L and Taylor L A 2002 Nannobacterial Alteration of Pyroxenes in Martian Meteorite ALH84001;Meteoritics & Planetary Sci. 37 1057–1070.Google Scholar
  13. Garcia-Guinea J, Martinez-Frias J, Gonzales-Martin R and Zamora L 1997 Framboidal Pyrites in Antique Books;Nature 388 631.CrossRefGoogle Scholar
  14. Hudgeons G L 1999 Petrology and Geochemistry of the Marquez Shale Septarian Concretions, Bastrop Co., TX. Unpubl. MS. Thesis, Univ. of Texas, p. 108.Google Scholar
  15. Kohn M L, Riciperti L, Stakes D and Orange D 1998 Sulfur Isotope Variability in Biogenic Pyrite: Reflections of Heterogeneous Bacterial Colonizations;Amer. Mineralogist 83 1454–1468.Google Scholar
  16. Konhauser K O 1998 Diversity of Bacterial Iron Mineralization;Earth Sci. Rev. 43 91–121.CrossRefGoogle Scholar
  17. Love L G 1957 Micro-Organisms and the Presence of Syngenetic Pyrite;Quart. J. Geol. Soc. London 113 429–440.CrossRefGoogle Scholar
  18. Love L G 1962 Biogenic Primary Sulfide of the Permian Kupfenschiefer and Marl Slate;Econ. Geol. 57 350–366.Google Scholar
  19. Love L G 1967 Early Diagenetic Iron Sulfide in Recent Sediments of the Wash (England);Sedimentology 9 327–352.CrossRefGoogle Scholar
  20. Love L G, Al-Kaisy, Adil T H and Brockley Harry 1984 Mineral and Organic Material in Matrices and Coatings of Framboidal Pyrite from Pennsylvanian Sediments, England;J. Sed. Petr. 54 869–876.Google Scholar
  21. Love L G and Amstutz G C 1966 Review of Microscopic Pyrite from the Devonian Chattanooga Shale and Rammelsberg Banderz;Fortschr. Mineral 43 273–309.Google Scholar
  22. Love L G and Murray J W 1963 Biogenic Pyrite in Recent Sediments of Christchurch Harbour, England;Amer. J. Sci. 261 433–448.CrossRefGoogle Scholar
  23. Posfai M, Buseck P R, Bazylinski D A and Frankel R B 1998 Reaction Sequence of Iron Sulfide Minerals in Bacteria and Their Use as Biomarkers;Science 280 880–883.CrossRefGoogle Scholar
  24. Postma D 1982 Pyrite and Siderite Formation in Brackish and Fresh Water Swamp Sediments;Amer. J. Sci. 282 1151–1183.CrossRefGoogle Scholar
  25. Raiswell R 1982 Pyrite Texture, Isotropic Composition and the Availability of Iron;Amer. J. Sci. 282 1244–1263.CrossRefGoogle Scholar
  26. Rickard D T 1970 The Origin of Framboids;Lithos 3 267–293.CrossRefGoogle Scholar
  27. Rust G W 1935 Colloidal Primary Copper Ores at Cornwall Mines, Southeastern Missouri;J. Geol. 43 398–426.CrossRefGoogle Scholar
  28. Sassano G P and Schrijver K 1989 Framboidal Pyrite: Early Diagenetic, Late Diagenetic and Hydrothermal Occurrences, Cambrian-Ordovician, Quebec;Amer. J. Sci. 289 167–179.CrossRefGoogle Scholar
  29. Sawlowicz Z 1993 Pyrite Framboids and Their Development;Geol. Rundschau 82 148–156.CrossRefGoogle Scholar
  30. Schieber J 2002a Sedimentary Pyrite: a Window into the Microbial Past;Geology 30 531–534.CrossRefGoogle Scholar
  31. Schieber J 2002b The Role of Organic Slime Matrix in the Formation of Pyritized Burrow Trails and Pyrite Concretions;Palaios 17 104–109.Google Scholar
  32. Schieber J and Baird G 2001 On the Origin and Significance of Pyrite Spheres in Devonian Black Shales of North America;J. Sed. Res. 71 155–166.Google Scholar
  33. Schneiderhöhn H 1923 Chalkographische Untersuchung des Mansfelder Kupferschiefers. N. Jb. Fur Miner. Geol. und Palaont. Beilage-Band47 1–38.Google Scholar
  34. Schopf J M 1965 Fossil Iron Bacteria Preserved in Pyrite;Proc. Amer. Philos. Soc. 109 288–308.Google Scholar
  35. Schouten C 1946 The Role of Sulphur Bacteria in the Formation of the So-called Sedimentary Copper Ores and Pyritic Ore Bodies;Econ. Geol. 41 517–538.Google Scholar
  36. Stevens B F 1999Louisiana Opal. Natalby, LA, Exquisite Stone and Creations.Google Scholar
  37. Suits N S and Wilkin R J 1998 Pyrite Formation in the Water Column and Sediments of a Meromictic Lake;Geol. 26 1099–1102.CrossRefGoogle Scholar
  38. Sweeney R E and Kaplan I R 1973 Pyrite Framboid Formation; Laboratory Synthesis and Marine Sediments;Econ. Geol. 68 618–634.CrossRefGoogle Scholar
  39. Thomas L H 1986 Elusive in Louisiana;Lapidary J. 40 (3) 54.Google Scholar
  40. Vallentyne J R 1962 Concerning Love, Microfossils and Pyrite Spherules;Trans. N.Y. Acad. Sci. Ser. 2,25 177–189.Google Scholar
  41. Vallentyne J R 1963 Isolation of Pyrite Spherules from Recent Sediments;Limnol. & Oceanogr. 8 16–30.CrossRefGoogle Scholar
  42. Wilkin R T and Barnes H L 1997 Formation Processes of Framboidal Pyrite;Geoch. et Cosm. Acta. 61 323–339.CrossRefGoogle Scholar

Copyright information

© Printed in India 2005

Authors and Affiliations

  • Robert L Folk
    • 1
  1. 1.Department of GeosciencesUniversity of TexasAustinUSA

Personalised recommendations