Advertisement

Journal of Biosciences

, Volume 6, Issue 5, pp 771–794 | Cite as

Sodium requirement and metabolism in nitrogen-fixing cyanobacteria

  • Joseph Thomas
  • Shree Kumar Apte
Article

Abstract

Sodium affects the metabolism of eukaryotes and prokaryotes in several ways. This review collates information on the effects of Na+ on the metabolism of cyanobacteria with emphasis on the N2,fixing filamentous species. Na+ is required for nitrogenase activity inAnabaena torulosa, Anabaena L-31 andPlectonema boryanum. The features of this requirement have been mainly studied inAnabaena torulosa. The need for Na+ is specific and cannot be replaced by K+, Li+, Ca 2 + or Mg2+. Processes crucial for expression of nitrogenase such as molybdenum uptake, protection of the enzyme from oxygen inactivation and conformational activation of the enzyme are not affected by Na+. Mo-Fe protein and Fe protein, the two components of nitrogenase are synthesized in the absence of Na+ but the enzyme complex is catalytically inactive. Photoevolution of O2 and CO2 fixation, which are severely inhibited in the absence of Na+, are quickly restored by glutamine or glutamate indicating that Na+ deprivation affects photosynthesis indirectly due to deficiency in the products of N2 fixation. Na+ deprivation decreases phosphate uptake, nucleoside phosphate pool and nitrogenase activity. These effects are reversed by the addition of Na+ suggesting that a limitation of available ATP caused by reduced phosphate uptake results in loss of nitrogenase activity during Na+ starvation.

Na+ influx inAnabaena torulosa andAnabaena L-31 is unaffected by low K+ concentration, is carrier mediated, follows Michaelis-Menten kinetics and is modulated mainly by membrane potential. Treatments which cause membrane depolarisation and hyperpolarisation inhibit and enhance Na+ influx respectively. These cyanobacteria exhibit rapid active efflux of Na+, in a manner different from the Na+/H+ antiporter mechanism found inAnacystis nidulans.

Na+ requirement in nitrogen metabolism including nitrate assimilation, synthesis of amino acids and proteins, in respiration and oxidative phosphorylation, in transport of sugars and amino acids, cellular distribution of absorbed sodium, physiological basis of salt tolerance and prospects of reclamation of saline soils by cyanobacteria are the other aspects discussed in this review.

Keywords

Cyanobacteria sodium requirement nitrogen fixation sodium transport salt tolerance 

Abbreviations used

CCCP

Carbomylcyanide m-chlorophenyl-hydrazone

DCCD

N,N′dicyclohexylcarbodiimide

DCMU

3-(3,4-dichlorophenyl-1,1-dimethylurea

DNP

dinitrophenol

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, M. B. and Arnon, D. I. (1955)Physiol. Plant.,8, 653.CrossRefGoogle Scholar
  2. Apte, S. K. (1984)Physiological aspects of nitrogen fixation and assimilation in blue-green algae, Ph. D. Thesis, Gujarat University, Ahmedabad.Google Scholar
  3. Apte, S. K., David, K. A. V. and Thomas, J. (1978)Biochem. Biophys. Res. Commun.,83, 1157.PubMedCrossRefGoogle Scholar
  4. Apte, S. K., Rowell, P. and Stewart, W. D. P. (1978)Proc. Roy. Soc. London,B200, 1.Google Scholar
  5. Apte, S. K. and Thomas, J. (1980)Curr. Microbiol.,3, 291.CrossRefGoogle Scholar
  6. Apte, S. K. and Thomas, J. (1982) inProc. Symp. Biological Nitrogen Fixation (Bombay, Department of Atomic Energy, Govt. of India) p. 150.Google Scholar
  7. Apte, S. K. and Thomas, J. (1983a)FEMS Microbiol. Lett.,16, 153.CrossRefGoogle Scholar
  8. Apte, S. K. and Thomas, J. (1983b)J. Biosci.,5, 225.Google Scholar
  9. Apte, S. K. and Thomas, J (1984)J. Gen. Microbiol.,130, 1161.Google Scholar
  10. Batterton, J. C. and Van Baalen, C. (1971)Arch. Microbiol.,76, 151.Google Scholar
  11. Blumwald, E., Mehlhorn, R. J. and Packer, L. (1983)Proc. Natl. Acad. Sci. USA,80, 2599.PubMedCrossRefGoogle Scholar
  12. Bostwick, C. D., Brown, L. R., and, Tischer, R. G. (1968)Physiol. Plant.,21, 466.CrossRefGoogle Scholar
  13. Brill, W. J., Steiner, A. L. and Shah, V. K. (1974)J. Bacteriol.,118, 986.PubMedGoogle Scholar
  14. Brownell, P. F. and Nicholas, D. J. D. (1967)Plant Physiol.,42, 915.PubMedGoogle Scholar
  15. Cardenas, J. and Mortenson, L. E. (1975)J. Bacteriol.,123, 978.PubMedGoogle Scholar
  16. Carter, N. (1933)J. Ecol.,21, 128.CrossRefGoogle Scholar
  17. Craigie, J. S. (1974)in Algal Physiology and Biochemistry (ed. W. D. P. Stewart) (London: Blackwell Scientific Publication) p. 206.Google Scholar
  18. Cresswell, R. C. and Syrett, P. J. (1982)J. Exp. Bot.,33, 1111.CrossRefGoogle Scholar
  19. David, K. A. V., Apte, S. K., Banerji, A. and Thomas, J. (1980)Appl. Env. Microbiol.,39, 1078.Google Scholar
  20. David, K. A. V., Apte, S. K. and Thomas, J. (1978)Biochem. Biophys. Res. Commun.,82, 39.PubMedCrossRefGoogle Scholar
  21. David, K. A. V. and Thomas, J. (1979)J. Biosci.,1, 447.Google Scholar
  22. Desikachary, T. V. (1959)Cyanophyta (New Delhi: Indian Council of Agricultural Research).Google Scholar
  23. De Vasconcelos, L. and Fay, P. (1974)Arch. Microbiol.,96, 271.CrossRefGoogle Scholar
  24. Dewar, M. A. and Barber, J. (1973)Planta,113, 143.CrossRefGoogle Scholar
  25. Dimroth, P. (1980)FEBS Lett. 122, 234.PubMedCrossRefGoogle Scholar
  26. Eady, R. R., Imam, S., Lowe, D. J., Miller, R. W., Smith, B. E. and Thorneley, R. N. F. (1980) inNitrogen Fixation (eds) W. D. P. Stewart and J. R. Gallon) (London: Academic Press) p. 19.Google Scholar
  27. Eady, R. R. and Postgate, J. R. (1974)Nature (London),249, 805.CrossRefGoogle Scholar
  28. Elferink, M. G. L., Hellingwerf, K. J., Van Belkum, M. J., Poolman, B. and Konings, W. N. (1984)FEMS Microbiol. Lett.,21, 293.CrossRefGoogle Scholar
  29. Emerson, R. and Lewis, C. M. (1942)J. Gen. Physiol.,25, 579.CrossRefPubMedGoogle Scholar
  30. Epstein, E. (1980) inGenetic Engineering of Osmoregulation: Impact on Plant Productivity for Food, Chemicals and Energy (eds D. W. Rains, R. C. Valentine and A. Hollaender) (New York: Plenum Press) p. 7.Google Scholar
  31. Fay, P. and De Vasconcelos, L. (1974)Arch. Microbiol.,99, 221.PubMedCrossRefGoogle Scholar
  32. Flowers, T. J., Troke, P. F. and Yeo, A. R. (1977)Ann. Rev. Plant Physiol.,28, 89.CrossRefGoogle Scholar
  33. Fogg, G. E. (1949)Ann. Bot.,13, 241.Google Scholar
  34. Fogg, G. E. (1973) inThe Biology of Blue-Green Algae (eds N. G. Carr and B. A. Whitton) (Los Angeles: University of California Press) p. 368.Google Scholar
  35. Fogg, G. E., Stewart, W. D. P., Fay, P. and Walsby, A. E. (1973)The Blue-Green Algae (London: Academic Press).Google Scholar
  36. Frank, L and Hopkins, I. (1969)J. Bacteriol.,100, 329.PubMedGoogle Scholar
  37. Galinsky, E. A. and Truper, H. G. (1982)FEMS Microbiol. Lett.,13, 357.CrossRefGoogle Scholar
  38. Haaker, H., Laane, C, Hellingwerf, K., Houwer, B., Konings, W. N. and Veeger, C. (1982)Eur. J. Biochem.,127, 639.PubMedCrossRefGoogle Scholar
  39. Haaker, H., Laane, C. and Veeger, C. (1980) inNitrogen Fixation (eds W. D. P. Stewart and J. R Gallon) London:Academic Press) p. 113.Google Scholar
  40. Hallam, C. and Whittam, R. (1977)Proc. Roy. Soc. London,B198, 109.Google Scholar
  41. Hallenbeck, P. C. and Benemann, J. R. (1980) inNitrogen Fixation (enzymology, physiology, genetics)-application inH2 and NH3 production (ed. P. M. Vignais) (Grenoble: Abstracts of a Societe de Chimie Biologique/Commission of the European Community Meeting on nitrogen fixation).Google Scholar
  42. Halpern, Y. S., Barash, H., Dover, S. and Druck, C. (1973)J. Bacteriol.,114, 53.PubMedGoogle Scholar
  43. Harold, F. M. (1977)Ann. Rev. Microbiol.,31, 181.CrossRefGoogle Scholar
  44. Harold, F. M. (1982)Curr. Top. Membr. Transp.,16, 485.CrossRefGoogle Scholar
  45. Harold, F. M. and Papineau, D. (1972)J. Membr. Biol.,8, 45.PubMedCrossRefGoogle Scholar
  46. Hawkesford, M. J, Reed, R. H., Rowell, P. and Stewart, W. D. P. (1981)Eur. J. Biochem.,115, 519.PubMedCrossRefGoogle Scholar
  47. Heinz, E. (1974)Curr. Top. Membr. Transp.,5, 137.Google Scholar
  48. Heinz, E. and Grassl, S. M. (1984) inElectrogenic Transport: Fundamental Principles and Physiological Implications. (eds. M. P. Blaustein and M. Lieberman) (New York: Raven Press) p. 93.Google Scholar
  49. Hilpert, W. and Dimroth, P. (1984)Eur. J. Biochem. 138, 579.PubMedCrossRefGoogle Scholar
  50. Hind, G., Nakatani, H. Y. and Izawa, S. (1969)Biochim. Biophys. Acta,172, 277.PubMedCrossRefGoogle Scholar
  51. Hodgkin, A. L. (1964)The Conduction of the Nerve Impulse (Liverpool: University Press).Google Scholar
  52. Izawa, S., Heath, R. L. and Hind, G. (1969)Biochim. Biophys. Acta,180, 388.PubMedCrossRefGoogle Scholar
  53. Joshi, R. G. and Kadrekar, S. B. (1980)Curr. Sci.,4, 1.Google Scholar
  54. Kahn, D., Hawkins, M. and Eady, R. R. (1982)J. Gen, Microbiol.,128, 779.Google Scholar
  55. Kaushik, B. D. and Venkataraman, G. S. (1982) inProc. Symp. Biological Nitrogen Fixation (Bombay: Department of Atomic Energy, Govt. of India) p. 378.Google Scholar
  56. Kennedy, C. and Postgate, J. R. (1977)J. Gen. Microbiol.,98, 551.PubMedGoogle Scholar
  57. Kimmich, G. A. (1982) inMembranes and Transport, (ed. A. N. Martonosi) (New York: Plenum Press) vol. 2, p. 175.Google Scholar
  58. Kodama, T. and Taniguchi, S. (1976)J. Gen. Microbiol.,96, 17.PubMedGoogle Scholar
  59. Kodama, T. and Taniguchi, S. (1977)J. Gen. Microbiol.,98, 503.Google Scholar
  60. Koyama, N., Kiyomiya, A. and Nosoh, Y. (1976)FEBS Lett.,72, 77.PubMedCrossRefGoogle Scholar
  61. Kratz, W. A. and Myers, J. (1955)Am. J. Bot.,42, 282.CrossRefGoogle Scholar
  62. Krulwich, T. A. (1983)Biochim. Biophys. Acta,726, 245.PubMedGoogle Scholar
  63. Laane, C., Krone, W., Konings, W. N., Haaker, H. and Veeger, C.(1979)FEBS Lett.,103, 328.PubMedCrossRefGoogle Scholar
  64. Laane, C, Krone, W., Konings, W; N., Haaker, H. and Veeger, C. (1980)Eur. J. Biochem.,103, 39.PubMedCrossRefGoogle Scholar
  65. Lanyi, J. K., Renthal, R. and MacDonald, R. E. (1976)Biochemistry,15, 1603.PubMedCrossRefGoogle Scholar
  66. Lawrie, A. C, Codd, G. A. and Stewart, W. D. P. (1976)Arch. Microbiol.,107, 15.PubMedCrossRefGoogle Scholar
  67. Lee-Kaden, J. and Simonis, W. (1982)J. Bacteriol.,151, 229.PubMedGoogle Scholar
  68. Lockau, W., Peterson, R. B., Wolk, C. P. and Burris, R. H. (1978)Biochim. Biophys. Acta,502, 298.PubMedCrossRefGoogle Scholar
  69. Lubin, M. and Ennis, H. L. (1964)Biochim. Biophys. Acta,80, 614.PubMedGoogle Scholar
  70. MacDonald, R. E., Greene, R. V. and Lanyi, J. K. (1977)Biochemistry,16, 3227.PubMedCrossRefGoogle Scholar
  71. Mackay, M. A., Norton, R. S. and Borowitzka, L. J. (1983)Marine Biol.,73, 301.CrossRefGoogle Scholar
  72. Mackinney, G. (1941)J. Biol. Chem.,140, 315.Google Scholar
  73. McLachlan, J. and Gorham, P. R. (1961)Can. J. Microbiol.,7, 869.CrossRefGoogle Scholar
  74. Measures, J. C. (1975)Nature (London),257, 398.CrossRefGoogle Scholar
  75. Miller, D. M., Jones, J. H., Yopp, J. H., Tindall, D. R. and Schmid, W. D. (1976)Arch. Microbiol.,111, 145.PubMedCrossRefGoogle Scholar
  76. Mitchell, P. (1966)Biol. Rev.,41, 445.PubMedCrossRefGoogle Scholar
  77. Mohammad, F. A. A., Reed, R. H. and Stewart, W. D. P. (1983)FEMS Microbiol. Lett.,16, 287.CrossRefGoogle Scholar
  78. Murry, M. A., Hallenbeck, P. C. and Benemann, J. R. (1984)Arch. Microbiol.,137, 194.CrossRefGoogle Scholar
  79. Nagatani, H. H. and Brill, W. J. (1974)Biochim. Biophys. Acta,362, 160.PubMedGoogle Scholar
  80. Nagatani, H. H. and Haselkom, R. (1978)J. Baderiol,134, 597.Google Scholar
  81. Nitschmann, W. H. and Peschek, G. A. (1982)FEBS Lett.,139, 77.CrossRefGoogle Scholar
  82. Nitschmann, W. H., Schmetterer, G., Muchl, R. and Peschek, G. A. (1982)Biochim. Biophys. Acta,682, 293.CrossRefGoogle Scholar
  83. O’Brien, R. W. and Stern, J. R. (1969a)J. Bacteriol.,99, 389.PubMedGoogle Scholar
  84. O’Brien, R. W. and Stern, J. R. (1969b)J. Bacteriol.,99, 395.PubMedGoogle Scholar
  85. Ownby, J. D., Shannahan, M. and Hood, E. (1979)J. Gen. Microbiol.,110, 255.Google Scholar
  86. Paschinger, H. (1977)Arch, Microbiol.,113, 285.CrossRefGoogle Scholar
  87. Peterson, R. B. and Burris, R. H. (1976)Arch. Microbiol.,108, 35.PubMedCrossRefGoogle Scholar
  88. Peterson, R. B. and Wolk, C. P. (1978)Proc. NatlAcad. Sci. USA,75, 6271.CrossRefGoogle Scholar
  89. Pienkos, P. T. and Brill, W. J. (1981)J. Bacteriol.,145, 743.PubMedGoogle Scholar
  90. Pienkos, P. T., Klevickis, S. and Brill, W. J. (1981)J. Baderiol,145, 248.Google Scholar
  91. Poole, R. J. (1978)Ann. Rev. Plant Physiol.,29, 437.CrossRefGoogle Scholar
  92. Postgate, J. R. (1982)The Fundamentals of Nitrogen Fixation (Cambridge: Cambridge University Press).Google Scholar
  93. Rains, D. W. (1972)Ann. Rev. Plant Physiol.,23, 367.CrossRefGoogle Scholar
  94. Reddy, P. M. and Talpasayi, E. R. S. (1974)Nature (London),249, 493.CrossRefGoogle Scholar
  95. Reed, R. H., Richardson, D. L., Warr, S. R. C. and Stewart, W. D. P. (1984)J. Gen. Microbiol.,130, 1.Google Scholar
  96. Reed, R. H., Rowell, P. and Stewart, W. D. P. (1980)Biochem. Soc. Trans.,8, 707.PubMedGoogle Scholar
  97. Reed, R. H., Rowell, P. and Stewart, W. D. P. (1981)Eur. J. Biochem. 116, 323.PubMedCrossRefGoogle Scholar
  98. Reed, R. H. and Stewart, W.D.P. (1983)New Phytol.,95, 595.CrossRefGoogle Scholar
  99. Richardson, D. L., Reed, R. H. and Stewart, W. D. P. (1983)FEMS Microbiol. Lett.,18, 99.CrossRefGoogle Scholar
  100. Rothstein, A. (1972) inMetabolic Pathways, (ed. L. E. Hokin) (London: Academic Press) vol. 6, p. 17.Google Scholar
  101. Schaedle, M. and Jacobson, L. (1967)Plant Physiol.,42, 953.PubMedCrossRefGoogle Scholar
  102. Scherer, S., Sturzl, E. and Boger, P. (1984)J. Baderiol,158, 609.Google Scholar
  103. Shah, V. K. and Brill, W. J. (1977)Proc. Natl. Acad. Sci. USA,74, 3249.PubMedCrossRefGoogle Scholar
  104. Shieh, Y. J. and Barber, J. (1971)Biochim. Biaphys. Acta,233, 594.CrossRefGoogle Scholar
  105. Shkedy-Vinkler, C. and Avi-Dor, Y. (1975)Biochem. J.,150, 219.PubMedGoogle Scholar
  106. Singh, R. N. (1950)Nature (London),165, 325.CrossRefGoogle Scholar
  107. Singh, R. N. (1961)The Role of Blue-Green Algae in Nitrogen Economy of Indian Agriculture (New Delhi: Indian Council of Agricultural Research).Google Scholar
  108. Smith, B. E. (1977)J. Less-Common Metals,54, 465.CrossRefGoogle Scholar
  109. Stewart, W. D. P. (1964)J. Gen. Microbiol.,36, 415.PubMedGoogle Scholar
  110. Stock, J. and Roseman, S. (1974)Biochem. Biophys. Res. Commun.,44, 132.CrossRefGoogle Scholar
  111. Sugino, Y. and Miyoshi, Y. (1964)J. Biol. Chem.,239, 2360.PubMedGoogle Scholar
  112. Szalay, A. A. and MacDonald, R. E. (1980) inGenetic Engineering of Osmoregulation: Impact on Plant Productivity of Food, Chemicals and Energy (eds D. W. Rains, R. C. Valentine and A. Hollaender) (New York: Plenum Press) p. 321.Google Scholar
  113. Sze, H. and Churchill, K. A. (1983) inCurrent Topics in Plant Biochemistry and Physiology, (eds D. D. Randall, D. G. Blevins, R. L. Larson, D. W. Emerich, J. D. Wall and C. D. Miles) (Missouri: University of Missouri, Columbia) vol. 1,p. 122.Google Scholar
  114. Taha, E. E. M. and Elrefai, A. E. M. H. (1962)Arch. Microbiol.,43, 67.Google Scholar
  115. Tel-Or, E. (1980a)Appl. Env. Microbiol.,40, 689.Google Scholar
  116. Tel-Or, E, (1980b)FEBS Lett.,110, 253.PubMedCrossRefGoogle Scholar
  117. Thomas, J. (1978) inIsotopes in Biological Dinitrogen Fixation (Vienna: International Atomic Energy Agency) p. 89.Google Scholar
  118. Thomas, J., Meeks, J. C, Wolk, C. P., Shaffer, P. W., Austin, S. M. and Chien, W. S. (1977)J. Bacteriol,129, 1545.PubMedGoogle Scholar
  119. Thomas, J., Wolk, C. P., Shaffer, P. W., Austin, S. M. and Galonsky, A. (1975)Biochem. Biophys. Res. Commun.,67, 501.PubMedCrossRefGoogle Scholar
  120. Thorneley, R. N. F., Chatt, J., Eady, R. R., Lowe, D. J., O’Donnel, M. J., Postgate, J. R., Richards, R. L. and Smith, B. E. (1980) inNitrogen Fixation, (eds W. H. Orme-Johnson and W. E. Newton) (Baltimore: University Park Press) vol. 1,p. 171.Google Scholar
  121. Thorneley, R. N. F. and Eady, R. R. (1977)Biochem. J. 167, 457.PubMedGoogle Scholar
  122. Van Baalen, C. (1962)Botanica Mar.,4, 129.CrossRefGoogle Scholar
  123. Van Gorkom, H. J. and Donze, M. (1971)Nature (London),234, 231.CrossRefGoogle Scholar
  124. Wilcox, M., Mitchison, G. J. and Smith, R. J. (1973)J. Cell. Sci.,12, 707.PubMedGoogle Scholar
  125. Wolfe, M. (1954a)Ann. Bot.,18, 299.Google Scholar
  126. Wolfe, M. (1954b)Ann. Bot.,18, 309.Google Scholar
  127. Wolk, C. P. (1967)Proc. Natl. Acad. Sci. USA,57, 1246.PubMedCrossRefGoogle Scholar
  128. Wolk, C. P. (1973)Bacteriol. Rev.,37, 32.PubMedGoogle Scholar
  129. Wood, N. B. and Haselkorn, R. (1977)Fed. Proc,36, 886.Google Scholar
  130. Yopp, J. H., Miller, D. M. and Tindall, D. R. (1978) in Energetics and Structure of Halophilic Microorganisms (eds S. R. Kaplan and M. Ginzburg) (Amsterdam: Elsevier Biomedical Press) p. 619.Google Scholar

Copyright information

© Indian Academy of Sciences 1984

Authors and Affiliations

  • Joseph Thomas
    • 1
  • Shree Kumar Apte
    • 1
  1. 1.Biology and Agriculture DivisionBhabha Atomic Research CentreTrombay, BombayIndia

Personalised recommendations