Advertisement

Journal of Astrophysics and Astronomy

, Volume 17, Issue 3–4, pp 183–197 | Cite as

Making the transition from Newton to Einstein: Chandrasekhar’s work on the post-Newtonian approximation and radiation reaction

  • Bernard F. Schutz
Article

Keywords

Gravitational Radiation Radiation Reaction Matched Asymptotic Expansion Retarded Green Function Gravitational Radiation Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. L., DeCanio, T. C. 1975,Gen. Rel. Gravit.,6, 197.zbMATHCrossRefADSGoogle Scholar
  2. Blanchet, L. 1996, “Gravitational radiation from relativistic sources”, inAstrophysical Sources of Gravitational Radiation, eds., J.-A. Marck, J.-P. Lasota, (Cambridge: Cambridge University Press).Google Scholar
  3. Burke, W. L. 1969, “The coupling of gravitational radiation to nonrelativistic sources”, Ph.D. Thesis (California Institute of Technology, 1969).Google Scholar
  4. Chandrasekhar, S. unpublished autobiographical memoirs, kindly supplied by N Lebovitz.Google Scholar
  5. Chandrasekhar, S. 1964, “The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity”,Astrophys. J.,140, 417–433.CrossRefADSMathSciNetGoogle Scholar
  6. Chandrasekhar, S. 1965, “The Post-Newtonian Equations of Hydrodynamics in General Relativity”,Astrophys. J,142, 1488–1512.CrossRefADSMathSciNetGoogle Scholar
  7. Chandrasekhar, S., Nutku, Y. 1969, “The Second PostNewtonian Equations of Hydrodynamics in General Relativity”,Astrophys. J,158, 55–79.CrossRefADSMathSciNetGoogle Scholar
  8. Chandrasekhar, S. 1969,Ellipsoidal Figures of Equilibrium, (New Haven: Yale University Press).zbMATHGoogle Scholar
  9. Chandrasekhar, S. 1969, “Conservation Laws in General Relativity and in the Post-Newtonian Approximations”,Astrophys. J,158, 45–54.CrossRefADSMathSciNetGoogle Scholar
  10. Chandrasekhar, S., Esposito, F. P. 1970, “The 2 1/2 -PostNewtonian Equations of Hydrodynamics and Radiation Reaction in General Relativity”,Astrophys. J,160, 153–179.CrossRefADSMathSciNetGoogle Scholar
  11. Chandrasekhar, S. 1983,The Mathematical Theory of Black Holes, (Oxford: Oxford University Press).zbMATHGoogle Scholar
  12. Damour, T. 1983, “Gravitational radiation and the motion of compact bodies”, in N. Deruelle and T. Piran,Gravitational Radiation (Amsterdam, North Holland), 59–144.Google Scholar
  13. Damour, T. 1987, “The problem of motion in Newtonian and Einsteinian gravity”, in S W Hawking and W Israel,300 Years of Gravitation (Cambridge: Cambridge University Press), 128–198.Google Scholar
  14. Dirac, P. A. M. 1938,Proc. Roy. Soc. (London),A167, 148.ADSGoogle Scholar
  15. Ehlers, J., Rosenblum, A., Goldberg, J. N., Havas, P. 1976,Astrophys. J. Lett.,208, L77.CrossRefADSGoogle Scholar
  16. Ehlers, J. 1980, “Isolated Systems in General Relativity”,Ann. N.Y.Acad. Sci.,336, 279–293.CrossRefADSGoogle Scholar
  17. Faulkner, J. 1971,Astrophys J,170, L99.CrossRefADSGoogle Scholar
  18. Fock, V. A. 1959,Spacetime and Gravitation, (New York, Pergamon).Google Scholar
  19. Futamase, T. 1983,Phys. Rev. D,28, 2372–2381.ADSGoogle Scholar
  20. Futamase, T, Schutz, B. F. 1983, “The Newtonian and PostNewtonian Approximations are Asymptotic to General Relativity”,Phys. Rev. D.,28, 2363–2237.CrossRefADSMathSciNetGoogle Scholar
  21. Futamase, T, Schutz, B.F. 1985, “Gravitational Radiation and the Validity of the Far-Zone Quadrupole Formula in the Newtonian Limit of General Relativity”,Phys. Rev. D,32, p. 2557–2565.CrossRefADSMathSciNetGoogle Scholar
  22. Hlse, R. A., Taylor, J.H. 1975, “Discovery of a pulsar in a binary system”,Astrophys. J.,195, L51-L53.CrossRefADSGoogle Scholar
  23. Jackson, J. D. 1962,Classical Electrodynamics (New York: Wiley).Google Scholar
  24. Kennefick, D. 1996, “Controversies in the history of the radiation reaction problem in general relativity”,preprint. Google Scholar
  25. Kerlick, G. D. 1980,Gen. Rel. Gravit.,12, 467 and 521.CrossRefADSGoogle Scholar
  26. Landsberg, P. T. 1982, ed.,The Enigma of Time (Bristol: Hilger).Google Scholar
  27. Misner, C. W., Thorne, K. S., Wheeler, J. L. 1973,Gravitation, (San Francisco: Freeman & Co.).Google Scholar
  28. Nordtvdet, K. Jr. 1968, “Equivalence Principle for Massive Bodies II. Theory”,Phys. Rev.,169, 1017–1025.CrossRefADSGoogle Scholar
  29. Peres, A. 1960, “Gravitational radiation”,Nuovo Cim.,15, 351.zbMATHCrossRefMathSciNetGoogle Scholar
  30. Peters, P. C. 1964,Phys. Rev.,136, 1224.CrossRefADSGoogle Scholar
  31. Schutz, B. F. 1980, “Statistical Formulation of Gravitational Radiation Reaction”,Phys. Rev. D,22, 249–259.CrossRefADSMathSciNetGoogle Scholar
  32. Thorne, K. S. 1969,Astrophys. J.,158, 1.CrossRefADSGoogle Scholar
  33. Thorne, K. S. 1990, foreword to S. Chandrasekhar,Collected Papers Vol. 5: Relativistic Astrophysics (University of Chicago Press), p. x–xx.Google Scholar
  34. Trautman, A. 1958,Bull. Acad. Polon. Sci.,6, 627.zbMATHGoogle Scholar
  35. Walker, M.,Will, CM. 1980,Astrophys J,242, L129.CrossRefADSGoogle Scholar
  36. Walker, M. 1984, “The quadrupole approximation to gravitational radiation”, in B. Bertotti,General Relativity and Gravitation (Dordrecht: Reidel), 109–123.Google Scholar
  37. Will, C. M. 1981,Theory and Experiment in Gravitational Physics, (Cambridge: Cambridge University Press).Google Scholar
  38. Will, C. M. 1994, “Gravitational Waves from inspiralling compact binaries: A post-Newtonian Approach”, inRelativistic Cosmology, ed., M. Sasaki (Tokyo: Universal Academy Press Inc.), pp. 83–98.Google Scholar

Copyright information

© Indian Academy of Sciences 1996

Authors and Affiliations

  • Bernard F. Schutz
    • 1
  1. 1.Max Planck Institute for Gravitational PhysicsThe Albert Einstein InstitutePotsdamGermany

Personalised recommendations