Advertisement

Interactive effects of hydrology and salinity on oligohaline plant species productivity: Implications of relative sea-level rise

  • 420 Accesses

  • 67 Citations

Abstract

Sea-level rise is anticipated to alter hydrologic and salinity regimes of coastal wetlands. We conducted a mesocosm experiment to determine species-level responses to 12 sea-level rise scenarios. Both hydrologic regime (−10, +5, and +20 cm flooding depth) and salinity level (fresh, 2‰, 4‰ and 6‰) were interactively manipulated. Within these various sea-level rise scenarios, we sought to determine the effects of hydrologic regime, salinity level, and the interaction of these two stresses on the productivity ofPanicum hemitomon, Sagittaria lancifolia, andSpartina patens, which are dominant macrophytes of fresh, intermediate, and brackish marsh types, respectively, in coastal Louisiana and the southeastern coastal plain. We found that altered hydrologic regimes and increased salinity levels differentially affected edaphic conditions and species-level productivity. Increases in flooding depth were most detrimental toS. patens. Salinity levels greater than 4‰ resulted in mortality ofP. hemitomon, and salinity levels of 6‰ resulted in reduced growth and eventual death, ofS. lancifolia. The effects of elevated salinity levels onP. hemitomon andS. lancifolia were exacerbated when coupled with increased flooding levels. Although soil organic matter was shown to increase in all vegetative conditions, increases were dependent upon the productivity of the species under the different hydrologic regimes and salinity levels withP. hemitomon displaying tremendous potential to increase soil organic matter under fresh conditions, especially when coupled with moderate flooding. The results of this study indicate that as plant communities are subjected to long-term changes in hydrology and salinity levels, community productivity and sustainability ulimately will be determined by species-level tolerances in conjunction with species interactions.

This is a preview of subscription content, log in to check access.

Literature Cited

  1. Anderson, C. E. 1974. A review, of structure in several North Carolina salt marsh plants, p. 307–344.In R. J. Reimold and W. H. Queen (eds.), Ecology of Halophytes. Academic Press, New York.

  2. Baldwin, A. H., K. L. McKee, andI. A. Mendelssohn. 1996. The influence of vegetation, salinity, and inundation on seed banks of oligohaline coastal marshes.American Journal of Botany 83: 470–479.

  3. Baldwin, A. H. andI. A. Mendelssohn. 1998. Effects of salinity and water level on coastal marshes: An experimental test of disturbance as a catalyst for vegetation change.Aquatic Botany 61:225–268.

  4. Bandyopadhyay, B. K., S. R. Pezeshki, R. D. Delaune, andC. W. Lindau. 1993. Influence of soil oxidation-reduction potential and salinity on nutrition, N-15 uptake, and growth ofSpartina patens.Wetlands 13:10–15.

  5. Barras, J. A., P. E. Bourgeois, and L. R. Handley. 1994. Lands loss in coastal Louisiana 1956–1990. National Biological Survey, National Wetlands Research Center, Open File Report 94-01. Lafayette, Louisiana.

  6. Bass, A. S. andR. E. Turner. 1997. Relationships between salt marsh loss and dredged canals in three Louisiana estuaries.Journal of Coastal Research 13:895–903.

  7. Baumann, R. H., J. W. Day, Jr, andC. A. Miller. 1984. Mississippi deltaic wetland survival: Sedimentation versus coastal submergence.Science 224:1093–1094.

  8. Bertness, M. D., L. Gough, andS. W. Shumway. 1992. Salt tolerances and the distribution of fugitive salt marsh plants.Ecology 73:1842–1851.

  9. Boesch, D. F., A. Mehta, J. T. Morris, W. K. Nuttle, C. Simenstad, andD. Swift. 1994. Scientific assessment of coastal wetland loss, restoration and management in Louisiana.Journal of Coastal Research 20:1–103.

  10. Bowen, H. J. M.. 1979. Environmental Chemistry of the Elements. Academic Press, New York.

  11. Britsch, L. D. andJ. B. Dunbar. 1993. Land loss rates: Louisiana coastal plain.Journal of Coastal Research 9:324–338.

  12. Broome, S. W., I. A. Mendelssohn, andK. L. McKee. 1995. Relative growth ofSpartina patens (Ait.) Muhl. andScirpus olneyi Gray occurring in a mixed stand as affected by salinity and flooding depth.Wetlands 15:20–30.

  13. Burdick, D. M.. 1989. Root aerenchyma development inSpartina patens in response to flooding.American Journal of Botany 76: 777–780.

  14. Burdick, D. M. andI. A. Mendelssohn. 1987. Waterlogging responses in dune, swale and marsh populations ofSpartina patens under field conditions.Oecologia 74:321–329.

  15. Burdick, D. M., I. A. Mendelssohn, andK. L. McKee. 1989. Live standing crop and metabolism of the marsh grassSpartina patens as related to edaphic factors in a brackish, mixed marsh community in Louisiana.Estuaries 12:195–204.

  16. Cahoon, D. R.. 1994. Recent accretion in two managed marsh impoundments in coastal Louisiana.Ecological Applications 4: 166–176.

  17. Cahoon, D. R., J. W. Day, andD. J. Reed. 1999. The influence of surface and shallow subsurface soil processes on wetland elevation: A synthesis.Current Topics in Wetland Biogeochemistry 3:72–88.

  18. Chabreck, R. H. 1972. Vegetation, water, and soil characteristics of the Louisiana coastal region. Louisiana State University Agricultural Experiment Station, Bulletin No. 664. Baton Rouge, Louisiana.

  19. Chabreck, R. H. andR. E. Condrey. 1979. Common Vascular Plants of the Louisiana Marsh, Sea Grant Publication #LSU-T-79-003. Louisiana State University Center for Wetland Resources. Baton Rouge, Louisiana.

  20. Day, Jr.,J. W., D. Pont, P. F. Hensel, andC. Ibanez. 1995. Impacts of sea-level rise on deltas in the Gulf of Mexico and the Mediterranean: The importance of pulsing events to sustainability.Estuaries 18:636–647.

  21. Day, Jr.,J. W., J. Rybczyk, F. Scarton, A. Rismondo, D. Are, andG. Cecconi. 1999. Soil accretionary dynamics, sea-level rise and the survival of wetlands in Venice Lagoon: A field and modeling approach.Estuarine Coastal and Shelf Science 49:607–628.

  22. Day, Jr.,J. W., G. P. Shaffer, L. D. Britsch, D. J. Reed, S. R. Hawes, andD. R. Cahoon. 2000. Pattern and process of land loss in the Mississippi Delta: A spatial and temporal analysis of wetland habitat change.Estuaries 23:425–438.

  23. Day, Jr.,J. W. andP. H. Templet. 1980. Consequences of sea level rise: Implications from the Mississippi Delta.Coastal Management 17:241–257.

  24. DeLaune, R. D., R. H. Baumann, andJ. G. Gosselink. 1983. Relationship among vertical accretion, coastal submergence, and erosion in a Louisiana Gulf Coast marsh.Journal of Sedimentary Petrology 53:147–157.

  25. DeLaune, R. D., J. A. Nyman, andW. H. Patrick Jr. 1994. Peat collapse, ponding and wetland loss in a rapidly submerging coastal marsh.Journal of Coastal Research 10:1021–1030.

  26. DeLaune, R. D., S. R. Pezeshki, andW. H. Patrick Jr. 1987. Response of coastal plants to increase in submergence and salinity.Journal of Coastal Research 3:535–546.

  27. Douglas, B. C.. 1997. Global sea rise: A redetermination.Surveys in Geophysics 18:279–292.

  28. Etherington, J. R.. 1984. Comparative studies of plant growth and distribution in relation to waterlogging: Differential formation of adventitious roots and their experimental excision inEpilobium hirsutum andChamerion augustifolium.Journal of Ecology 72:389–404.

  29. Ewing, K., K. L. McKee, I. A. Mendelssohn, andM. Hester. 1995. A comparison of indicators of sublethal salinity stress in the salt marsh grass,Spartina patens (Ait.) Muhl.Aquatic Botany 52:59–74.

  30. Faulkner, S. P., W. H. Patrick Jr., andR. P. Gambrell. 1989. Field techniques for measuring wetland soil parameters.Soil Science Society of America 53:883–890.

  31. Fisher, K. J.. 2003. Response ofPanicum hemitomon Shultes to Environmental Change, M.S. Thesis, Southeastern Louisiana University, Hammond, Louisiana.

  32. Flynn, K. M., K. L. McKee, andI. A. Mendelssohn. 1995. Recovery of freshwater marsh vegetation after a saltwater intrusion event.Oecologia 103:63–72.

  33. Gagliano, S. M., K. Meyer-Arendt, andK. Wicker. 1981. Land loss in the Mississippi River deltaic plain.Transactions of the Gulf Coast Association of Geological Societies 31:295–300.

  34. Gambrell, R. P. andW. H. Patrick Jr. 1978. Chemical and microbiological properties of anaerobic soils and sediments, p. 319–333.In D. D. Hook and R. M. M. Crawford (eds.), Plant Life in Anaerobic Environments. Ann Arbor Science, Ann Arbor, Michigan.

  35. Girden, E. R.. 1992. ANOVA Repeated Measures. Sage University Paper on Quanitative Applications in the Social Sciences, series no. 07-084. Sage Publications, Newbury Park, California.

  36. Gleason, M. L. andJ. C. Zieman. 1981. Influence of tidal inundation on internal oxygen supply ofSpartina alterniflora andSpartina patens.Estuarine Coastal and Shelf Science 13:47–57.

  37. Godfrey, R. K. andJ. W. Wooten. 1979. Aquatic and Wetland Plants of the Southeastern United States: Monocotyledons. The University of Georgia Press, Athens, Georgia.

  38. Gornitz, V., S. Lebedeff, andJ. Hansen. 1982. Global sea level trend in the past century.Science 215:1611–1614.

  39. Gosselink, J. G.. 1970. Growth ofSpartina patens andS. alterniflora as influenced by salinity and source of nitrogen.Coastal Studies Bulletin 5:97–110.

  40. Gough, L. andJ. B. Grace. 1998. Effects of flooding, salinity and herbivory on coastal plant communities, Louisiana, United States.Oecologia 117:527–535.

  41. Gough, L. andJ. B. Grace. 1999. Effects of environmental change on plant species density: Comparing predictions with experiments.Ecology 80:882–890.

  42. Grace, J. B. andM. A. Ford. 1996. The potential impact of herbivores on the susceptibility of the marsh plantSagittaria lancifolia to saltwater intrusion in coastal wetlands.Estuaries 19: 13–20.

  43. Greiner La Peyre, M. K., J. B. Grace, E. Hahn, andI. A. Mendelssohn. 2001. The importance of competition in regulating plant species abundance along a salinity gradient.Ecology 82:62–69.

  44. Hatton, R. S., R. D. DeLaune, andW. H. Patrick, Jr. 1983. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana.Limnology and Oceanography 28:494–502.

  45. Hester, M. W., I. A. Mendelssohn, andK. L. McKee. 1996. Intraspecific variation in salt tolerance and morphology in the coastal grassSpartina patens (Poaceae).American Journal of Botany 83:1521–1527.

  46. Hester, M. W., I. A. Mendelssohn, andK. L. McKee. 1998. Intraspecific variation in salt tolerance and morphology inPanicum hemitomon andSpartina alterniflora (Poaceae).International Journal of Plant Science 159:127–138.

  47. Hester, M. W., I. A. Mendelssohn, andK. L. McKee. 2001. Species and population variation to salinity stress inPanicum hemitomon, Spartina patens, andSpartina alterniflora: Morphological and physiological constraints.Environmental and Experimental Botany 46:277–297.

  48. Hook, D. D. 1984. Adaptations to flooding with fresh water, p. 265–295.In T. T. Kozlowski (ed.), Flooding and Plant Growth. Academic Press, New York.

  49. Howard, R. J. andI. A. Mendelssohn. 1995. Effects of increased water depth on growth of a common perennial freshwater-intermediate marsh species in coastal Louisiana.Wetlands 15: 82–91.

  50. Howard, R. J. andI. A. Mendelssohn. 1999a. Salinity as a constraint on growth of oligohaline marsh macrophytes. I. Species variation in stress tolerance.American Journal of Botany 86:785–794.

  51. Howard, R. J. andI. A. Mendelssohn. 1999b. Salinity as a constraint on growth of oligohaline marsh macrophytes. II. Salt pulses and recovery potential.American Journal of Botany 86: 795–806.

  52. Howard, R. J. andI. A. Mendelssohn. 2000. Structure and composition of oligohaline marsh plant community exposed to salinity pulses.Aquatic Botany 68:143–164.

  53. Keddy, P. A. 2000. Wetland Ecology: Principles and Conservation. Cambridge University Press, Cambridge, U.K.

  54. Koch, M. S. andI. A. Mendelssohn. 1989. Sulphide as a soil phytotoxin: Differential responses in two marsh species.Journal of Ecology 77:565–578.

  55. Koch, M. S., I. A. Mendelssohn, andK. L. McKee. 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes.Limnology and Oceanography 35:399–408.

  56. Larcher, W. 1995. Physiological Plant Ecology, 3rd edition. Springer-Verlag, Berlin, Germany.

  57. Lessman, J. M., I. A. Mendelssohn, M. W. Hester, andK. L. McKee. 1997. Population variation in growth response to flooding of three marsh grasses.Ecological Engineering 8:31–47.

  58. Martin, S. B. 2000. The effects of salinity, hydrologic regime, and substrate type on three species ofSagittaria and algal mudflat creation. M.S. Thesis, Southeastern Louisiana University, Hammond, Louisiana.

  59. Mayence, C. E. andM. W. Hester. 2005. Restoring maidencane-dominated thick-mat floating marsh (Louisiana).Ecological Restoration 23:272–273.

  60. McKee, K. L. andI. A. Mendelssohn. 1989. Response of a freshwater marsh plant community to increased salinity and increased water level.Aquatic Botany 34:301–316.

  61. McKee, K. L., I. A. Mendelssohn, andM. W. Hester. 1988. A reexamination of pore water sulfide concentrations and redox potentials near the aerial roots ofRhizophora mangle andAvicennia germinans.American Journal of Botany 75:1352–1359.

  62. Mitsch, W. J. andJ. G. Gosselink. 2000. Wetlands, 3rd edition. John Wiley and Sons, Inc., New York.

  63. Morris, J. T., P. V. Sundareshwar, C. T. Nietch, B. Kjerfve, andD. R. Cahoon. 2002. Responses of coastal wetlands to rising sea level.Ecology 83:2869–2877.

  64. Naidoo, G., K. L. McKee, andI. A. Mendelssohn. 1992. Anatomical and metabolic responses to waterlogging and salinity inSpartina alterniflora andS. patens (Poaceae).American Journal of Botany 79:765–770.

  65. Neter, J., W. Wasserman, andM. H. Kutner. 1990. Applied Linear Statistical Models, 3rd edition, Irwin, Boston, Massachusetts.

  66. Nicholls, R. J., F. M. L. Hoozemans, andM. Marchand. 1999. Increasing flood risk and wetland losses due to global sea-level rise: Regional and global analyses.Global Environmental Change 9:569–587.

  67. Nuttle, W. K., M. M. Brinson, D. R. Cahoon, J. C. Callaway, R. R. Christian, G. L. Chmura, W. H. Conner, R. H. Day, M. A. Ford, J. Grace, J. C. Lynch, R. A. Orson, R. W. Parkinson, D. J. Reed, J. M. Rybczyk, T. J. Smith, R. P. Stumpf, andK. Williams. 1997. Conserving coastal wetlands despite sea level rise.EOS, Transactions, American Geophysical Union 78:257–264.

  68. Nyman, J. A., R. D. DeLaune, H. H. Roberts, andW. H. Patrick Jr. 1993. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh.Marine Ecology Progress Series 96:269–279.

  69. Penland, S. andK. E. Ramsey. 1990. Relative sea-level rise in Louisiana and the Gulf of Mexico: 1908–1988.Journal of Coastal Research 6:323–342.

  70. Pezeshki, S. R. andR. D. DeLaune. 1991. Ecophenic variations in wiregrass (Spartina patens).Journal of Aquatic Plant Management 29:99–102.

  71. Pezeshki, S. R., R. D. DeLaune, andS. Z. Pan. 1991. Relationship of soil hydrogen sulfide level to net carbon assimilation ofPanicum hemitomon andSpartina patens.Vegetatio 95:156–166.

  72. Pezeshki, S. R., R. D. DeLaune, andW. H. Patrick Jr. 1987a. Effects of flooding and salinity on photosynthesis ofSagittaria lancifolia.Marine Ecology Progress Series 41:87–91.

  73. Pezeshki, S. R., R. D. DeLaune, andW. H. Patrick Jr. 1987c. Response of the freshwater marsh species,Panicum hemitomon Schult., to increased salinity.Freshwater Biology 1:195–200.

  74. Ponnamperuma, F. N. 1972. The chemistry of submerged soils.Advances in Agronomy 24:29–96.

  75. Reed, D. J. 1995. The response of coastal marshes to sea-level rise: Survival or submergence?Earth Surface Processes and Landforms 20:39–48.

  76. Reed, D. J., N. De Luca, andA. L. Foote. 1997. Effect of hydrologic management on marsh surface sediment deposition in coastal Louisiana.Estuaries 20:301–311.

  77. Salinas, L. M., R. D. DeLaune, andW. H. Patrick Jr. 1986. Changes occurring along a rapidly submerging coastal area: Louisiana, USA.Journal of Coastal Research 2:269–284.

  78. Sasser, C. E., M. D. Dozier, J. G. Gosselink, andJ. M. Hill. 1986. Spatial and temporal changes in Louisiana’s Barataria basin marshes 1945–1980.Environmental Management 10:671–680.

  79. Sasser, C. E., J. G. Gosselink, E. M. Swenson, C. M. Swarzenski, andN. C. Leibowitz. 1996. Vegetation, substrate and hydrology in floating marshes in the Mississippi river delta plain wetlands, USA.Vegetatio 122:129–142.

  80. Shacklette, H. T. andJ. G. Boerngen. 1984. Elemental concentrations in soils and other surficial materials of the counterminous United States. U.S. Geological Survey Professional Paper 1270. U.S. Government Printing Office, Washington, D.C.

  81. Smart, R. M. andJ. W. Barko. 1978. Influence of sediment salinity and nutrients on the physiological ecology of selected salt marsh plants.Estuarine and Coastal Marine Science 7:487–495.

  82. SPSSInc. 2000. SYSTAT. version 10. Chicago, Illinois.

  83. Stevenson, J. C., L. G. Ward, andM. S. Kearney. 1986. Vertical accretion in marshes with varying rates of sea level, p. 241–259.In D. A. Wolfe (ed.), Estuarine Variability. Academic Press, New York.

  84. Templet, P. H. andK. Meyer-Arendt. 1988. Louisiana wetland loss: A regional water management approach to the problem.Environmental Management 12:181–192.

  85. Thomas, R. D. andC. M. Allen. 1993. Atlas of the Vascular Flora of Louisiana. Volume I: Ferns and Fern Allies, Conifers, and Monocotyledons. Louisiana Department of Wildlife and Fisheries. Natural Heritage Program and Nature Conservancy, Baton Rouge, Louisiana.

  86. Titus, J. G. 1988. Greenhouse effect, sea level rise and coastal wetlands. U.S. Environmental Protection Agency, EPA-230-05-86-013. Washington, D.C.

  87. Turner, R. E. 1997. Wetland loss in the northern Gulf of Mexico: Multiple working hypotheses.Estuaries 20:1–13.

  88. Turner, F. T. andW. H. Patrick Jr. 1968. Chemical changes in waterlogged soils as a result of oxygen depletion.Transactions of the 9th International Congress Soil Science 4:53–65.

  89. U.S. Environmental Protection Agency (USEPA). 2000. Exhibit 5-1. Review of Background Concentrations of Metals, USEPA, Superfund Risk Assessment, Washington, D.C.

  90. Vartapetian, B. B. andM. B. Jackson. 1997. Plant adaptations to anaerobic stress.Annals of Botany-London 79:3–20.

  91. Visser, E. J. W., C. W. P. M. Blom, andL. A. C. J. Voesenek. 1996. Flooding-induced adventitious rooting inRumex: Morphology and development in an ecological perspective.Acta Botanica Neerl 45:17–28.

  92. Visser, J. K., C. E. Sasser, R. H. Chabreck, andR. G. Linscombe. 1999. Long-term vegetation change in Louisiana tidal marshes, 1968–1992.Wetlands 19:168–175.

  93. Webb, E. C. andI. A. Mendelssohn. 1996. Factors affecting vegetation dieback of an oligohaline marsh in coastal Louisiana: Field manipulations of salinity and submergence.American Journal of Botany 83:1429–1434.

  94. Webb, E. C., I. A. Mendelssohn, andB. J. Wilsey. 1995. Causes for vegetation dieback in a Louisiana salt marsh: A bioassay approach.Aquatic Botany 51:281–289.

  95. Willis, J. M. andM. W. Hester. 2004. Interactive effects of salinity, flooding, and soil type onPanicum hemitomon.Wetlands 24:43–50.

  96. Wooten, J. W. 1986. Edaphic factors associated with eleven species ofSagittaria (Alismataceae).Aquatic Botany 24:35–41.

  97. Yeo, A. R. 1983. Salinity resistance: Physiologies and prices.Physiological Plant 58:214–222.

Download references

Author information

Correspondence to E. A. Spalding.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Spalding, E.A., Hester, M.W. Interactive effects of hydrology and salinity on oligohaline plant species productivity: Implications of relative sea-level rise. Estuaries and Coasts: JERF 30, 214–225 (2007) doi:10.1007/BF02700165

Download citation

Keywords

  • Adventitious Root
  • Salinity Level
  • Coastal Wetland
  • Hydrologic Regime
  • Soil Organic Matter Content