Advertisement

Journal of Neuro-Oncology

, Volume 62, Issue 1–2, pp 135–144 | Cite as

Boron neutron capture therapy for glioblastoma multiforme: clinical studies in Sweden

  • Jacek CapalaEmail author
  • Britta H.-Stenstam
  • Kurt Sköld
  • Per Munck af%Rosenschöld
  • Valerio Giusti
  • Charlotta Persson
  • Eva Wallin
  • Arne Brun
  • Lars Franzen
  • Jörgen Carlsson
  • Leif Salford
  • Crister Ceberg
  • Bertil Persson
  • Luigi Pellettieri
  • Roger Henriksson
Article

Summary

A boron neutron capture therapy (BNCT) facility has been constructed at Studsvik, Sweden. It includes two filter/moderator configurations. One of the resulting neutron beams has been optimized for clinical irradiations with a filter/moderator system that allows easy variation of the neutron spectrum from the thermal to the epithermal energy range. The other beam has been designed to produce a large uniform field of thermal neutrons for radiobiological research. Scientific operations of the Studsvik BNCT project are overseen by the Scientific Advisory Board comprised of representatives of major universities in Sweden. Furthermore, special task groups for clinical and preclinical studies have been formed to facilitate collaboration with academia. The clinical Phase II trials for glioblastoma are sponsored by the Swedish National Neuro-Oncology Group and, presently, involve a protocol for BNCT treatment of glioblastoma patients who have not received any therapy other than surgery. In this protocol,p-boronophenylalanine (BPA), administered as a 6-h intravenous infusion, is used as the boron delivery agent. As of January 2002, 17 patients were treated. The 6-h infusion of 900 mg BPA/kg body weight was shown to be safe and resulted in the average blood-boron concentration of 24 µg/g (range: 15–32 µg/g) at the time of irradiation (approximately 2–3 h post-infusion). Peak and average weighted radiation doses to the brain were in the ranges of 8.0–15.5 Gy(W) and 3.3–6.1 Gy(W), respectively. So far, no severe BNCT-related acute toxicities have been observed. Due to the short follow-up time, it is too early to evaluate the efficacy of these studies.

Key words

BNCT boron neutron capture therapy boronophenylalanine clinical trials glioblastoma multiforme radiation therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Briesmeister JF: MCNP — A General Monte Carlo N-particle Transport Code. Version 4B, LA-12625-M, Los Alamos National Laboratory, USA, 1997Google Scholar
  2. 2.
    DOORS3.2: One, two- and three-dimensional discrete ordinates neutron/photon transport code system. RSICC CODE PACKAGE CCC-650, 1998Google Scholar
  3. 3.
    Chanana AD, Capala J, Chadha M, Coderre JA, Diaz AZ, Elowitz EH, Iwai J, Joel D, Liu HB, Ma R, Pendzick N, Peress NS, Shady MS, Slatkin DN, Tyson GW, Wielopolski L: Boron neutron capture therapy for glioblastoma multiforme: interim results from the phase I/II dose-escalation studies. Neurosurgery 44: 1182–1192; discussion 1192–1193, 1999PubMedCrossRefGoogle Scholar
  4. 4.
    Aziz T, Press NS, Diaz AZ, Capala J, Chanana AD: Postmortem neuropathological features secondary to boron neutron capture therapy for glioblastoma multiforme. J Neuropathol Exp Neurol 50: 62–73, 2000Google Scholar
  5. 5.
    Diaz AZ, Coderre JA, Chanana AD, Ma R: Boron neutron capture therapy for malignant gliomas. Ann Med 32: 81–85, 2000PubMedGoogle Scholar
  6. 6.
    MacDonald D: Response criteria for phase II studies of supratentorial malignant glioma, JCO 8: 1277–1280, 1990Google Scholar
  7. 7.
    Coderre JA, Morris GM: The radiation biology of boron neutron capture therapy. Radiat Res 151: 1–18, 1999PubMedCrossRefGoogle Scholar
  8. 8.
    Coderre JA, Gavin PR, Capala J, Ma R, Morris GM, Button TM, Tariq A, Peress NS: Tolerance of the normal canine brain to epithermal neutron irradiation in the presence ofp-boronophenylalanine. J Neuro-Oncol 48: 27–40, 2000CrossRefGoogle Scholar
  9. 9.
    Nigg DW, Wheeler FJ, Wessol DE, Capala J, Chadha M: Computational dosimetry and treatment planning for boron neutron capture therapy. J Neuro-Oncol 33:93–104, 1997CrossRefGoogle Scholar
  10. 10.
    Wheeler FJ, Nigg DW: Three-dimensional radiation dose distribution analysis for boron neutron capture therapy. Nucl Sci Eng 110: 16–31, 1992Google Scholar
  11. 11.
    Elowitz EH, Bergland, RM, Coderre JA, Joel DD, Chadha M, Chanana AD: Biodistribution ofp-boronophenylalanine in patients with glioblastoma multiforme for use in boron neutron capture therapy. Neurosurgery 42: 463–469, 1998PubMedCrossRefGoogle Scholar
  12. 12.
    Coderre JA, Chanana AD, Joel DD, Elowitz EH, Micca PL, Nawrocky MM, Chadha M, Gebbers, JO, Shady M, Peress NS, Slatkin DN: Biodistribution of boronophenylalanine in patients with glioblastoma multiforme: boron concentration correlates with tumour cellularity. Radiat Res 149:163–170, 1998PubMedCrossRefGoogle Scholar
  13. 13.
    Bauer WF, Micca PL, White BM: A rapid method for the direct analysis of boron in whole blood by atomic emission spectroscopy. In: Soloway AH, Barth RF, Carpenter DE (eds) Advances in Neutron Capture Therapy. Plenum Press, New York, pp 403–407, 1993Google Scholar
  14. 14.
    Smith DR, Chandra S, Barth RF, Yang W, Joel DD, Coderre JA: Quantitative imaging and microlocalization of boron-10 in brain tumors and infiltrating tumor cells by SIMS ion microscopy. Relevance to neutron capture therapy. Cancer Res 61: 8179–8187, 2001PubMedGoogle Scholar
  15. 15.
    Joel DD, Coderre JA, Micca PL, Naawrocky MM: Effects of dose and infusion time on the delivery ofp-boronophenyalanine for neutron capture therapy. J Neuro-Oncol 41: 213–221, 1999CrossRefGoogle Scholar
  16. 16.
    Wittig A, Sauerwein WA, Coderre JA: Mechanisms of transport ofp-boronophenylalanine through the cell membranein vitro. Radiat Res 153: 173–180, 2000PubMedCrossRefGoogle Scholar
  17. 17.
    Kankaanranta L, Seppälä T, Kalli M, Karila J, Aschan C, Seren T, Kortesniemi M, Kotiluoto, E, Järviluoma E, Kulvik M, Laakso J, Brander A, Jääskeläinen J, Vähätalo J, Auterinen I, Savolainen S, Färkkilä M, Joensuu H: First clinical results in the Finnish study on BPA-mediated BNCT in glioblastoma. In: Proceedings of the Ninth International Symposium on Neutron Capture Therapy for Cancer. Osaka, Japan, October, 2000Google Scholar
  18. 18.
    Busse PM, Zamenhof RG, Harling OK, Kalpan I, Kaplan J, Chuamg CF, Goorley JT, Kiger WS III, Railey KJ, Tang J, Solares GR, Plamer MR: The Harvard-MIT BNCT program. Overview of the clinical trails and translational research. In: Hawthorne MF, Shelly K, Wiersema RJ (eds) Frontiers in Neutron Capture Therapy. Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, pp 37–60, 2001Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Jacek Capala
    • 1
    • 2
    Email author
  • Britta H.-Stenstam
    • 3
  • Kurt Sköld
    • 1
  • Per Munck af%Rosenschöld
    • 1
    • 4
  • Valerio Giusti
    • 5
  • Charlotta Persson
    • 1
  • Eva Wallin
    • 3
  • Arne Brun
    • 6
  • Lars Franzen
    • 8
  • Jörgen Carlsson
    • 2
  • Leif Salford
    • 7
  • Crister Ceberg
    • 4
  • Bertil Persson
    • 4
  • Luigi Pellettieri
    • 9
  • Roger Henriksson
    • 8
  1. 1.Studsvik Medical ABNyköping
  2. 2.Unit of Biomedical Radiation Sciences, Rudbeck LaboratoryUppsala UniversityUppsala
  3. 3.Nyköpings Lasarett, Landstinget SörmlandNyköping
  4. 4.Department of Radiation PhysicsLund UniversityLundSweden
  5. 5.Department of Mechanical, Nuclear and Production EngineeringUniversity of PisaPisaItaly
  6. 6.Department of Forensic PathologyLund University HospitalLund
  7. 7.Department of NeurosurgeryLund University HospitalLund
  8. 8.Department of OncologyUmeå University HospitalUmeå
  9. 9.Department of NeurosurgerySahlgrenska University HospitalGöteborgSweden

Personalised recommendations