Advertisement

Représentations galoisiennes, différentielles de Kähler et « conjectures principales »

  • B. Mazur
  • J. Tilouine
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [1]
    Bourbaki N.,Algèbre Commutative, chapitre 7: Diviseurs, Paris, Hermann, 1965.Google Scholar
  2. [2]
    Carayol H., Sur les représentations-adiques attachées aux formes modulaires de Hilbert,C.R. Acad. Sc. Paris, série I, 296 (1985), 629–632.MathSciNetGoogle Scholar
  3. [3]
    Coates J., Schmidt K., Iwasawa theory for the symmetric square of an elliptic curve,J. reine angew. Math.,375 (1987), 104–156.MathSciNetGoogle Scholar
  4. [4]
    Gillard R., Fonctions Lp-adiques des corps quadratiques imaginaires et de leurs extensions abéliennes,J. reine angew. Math.,358 (1985), 76–91.zbMATHMathSciNetGoogle Scholar
  5. [5]
    Greenberg R., On the conjecture of Birch and Swinnerton-Dyer,Inv. Math.,72 (1983), 241–265.zbMATHCrossRefGoogle Scholar
  6. [6]
    Greenberg R., Iwasawa theory forp-adic representations,Advanced Studies in Pure Mathematics,17 (1989), 97–137.Google Scholar
  7. [7]
    Hida H., Iwasawa modules attached to congruences of cusp forms,Ann. Scient. Ec. Norm. Sup., 4e série,19 (1986), 231–273.zbMATHMathSciNetGoogle Scholar
  8. [8]
    Hida H., Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms,Inv. Math.,85 (1986), 545–577.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Hida H., Ap-adic measure attached to the zeta functions associated with two elliptic modular forms, I,Inv. Math.,79 (1985), 159–195.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Hida H., Hecke algebras for GL1 and GL2,Sém. Th. N. Paris, 1985–1986, 131–163, Birkhäuser Verlag, 1986.Google Scholar
  11. [11]
    Katz N.,p-adic interpolation of real analytic Eisenstein series,Ann. of Math.,104 (1976), 459–571.CrossRefMathSciNetGoogle Scholar
  12. [12]
    Katz N., Mazur B.,Arithmetic Moduli of Elliptic Curves, Ann. of Math. Studies, number 108, Princeton Univ. Press, 1985.Google Scholar
  13. [13]
    Langlands R. P., Automorphic forms and-adic representations, inProc. Int. Summer School on Modular Functions of One Variable II, Antwerp, 1972, Lecture Notes in Math.,349, 361–500, Springer-Verlag, 1973.CrossRefMathSciNetGoogle Scholar
  14. [14]
    Mazur B., Modular Curves and the Eisenstein Ideal,Publ. Math. I.H.E.S.,47 (1977), 33–186.zbMATHMathSciNetGoogle Scholar
  15. [15]
    Mazur B., Wiles A., Class fields of abelian extensions ofQ,Inv. Math.,76 (1984), 179–330.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Mazur B., Wiles A., Onp-adic families of Galois representations,Comp. Math.,59 (1986), 231–264.zbMATHMathSciNetGoogle Scholar
  17. [17]
    Mazur B., Deforming Galois Representations, inGalois Groups over Q, 385–438, Springer-Verlag, 1989.Google Scholar
  18. [18]
    Mazur B., Ribet K., Two-dimensional representations in the arithmetic of modular curves, à paraître dansSém. Orsay, 1987–1988, Ed. G. Henniart,Astérisque.Google Scholar
  19. [19]
    Rubin K.,The « main conjectures » in Iwasawa theory for imaginary quadratic fields, Preprint, Ohio State U., Columbus, Ohio, 1990.Google Scholar
  20. [20]
    deShalit E.,Iwasawa Theory of Elliptic Curves with Complex Multiplication, Persp. in Math., vol. 3, Academic Press, 1987.Google Scholar
  21. [21]
    Shimura G.,Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton Univ. Press, 1972.Google Scholar
  22. [22]
    Tilouine J., Un sous-groupep-divisible de la jacobienne de X1(Np r) comme module sur l’algèbre de Hecke,Bull. Soc. Math. Fr.,115 (1987), 329–360.zbMATHMathSciNetGoogle Scholar
  23. [23]
    Tilouine J.,Kummer’s Criterion over Λ and Hida’s Congruence Module, Hokkaido University Technical Report Series in Mathematics, vol. 4, 1987.Google Scholar
  24. [24]
    Tilouine J., Théorie d’Iwasawa classique et de l’algèbre de Hecke ordinaire,Comp. Math.,65 (1988), 265–320.zbMATHMathSciNetGoogle Scholar
  25. [25]
    Tilouine J., Une conséquence de la conjecture principale dans la théorie d’Iwasawa d’un corps quadratique imaginaire,C.R. Acad. Sci. Paris, série 1,306 (1988), 217–221.zbMATHMathSciNetGoogle Scholar
  26. [26]
    Tilouine J., Sur la conjecture principale anticyclotomique,Duke Math. J.,59 (1989), 629–673.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    Wiles A., Onp-adic representations over a totally real field,Ann. of Math.,123 (1986), 407–456.CrossRefMathSciNetGoogle Scholar
  28. [28]
    Yager R.,p-adic measures on Galois groups,Inv. Math.,76 (1984), 331–343.zbMATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    Gelbart S.,Automorphic Forms on Adele Groups, Ann. of Math. Studies, Princeton Univ. Press, 1975.Google Scholar
  30. [30]
    Weil A., On a certain type of characters of idèle-class group of an algebraic number-field, inŒuvres scientifiques, vol. 2, [1955c], 255–261, Springer-Verlag, 1980.MathSciNetGoogle Scholar

Copyright information

© Publications Mathématiques de L’I.H.É.S. 1990

Authors and Affiliations

  • B. Mazur
    • 1
    • 2
  • J. Tilouine
    • 3
    • 4
  1. 1.Department of MathematicsHarvard UniversityCambridgeU.S.A.
  2. 2.Institut des Hautes Etudes scientifiquesBures-sur-YvetteFrance
  3. 3.C.N.R.S., URA D.0752 Laboratoire de Géométrie algébrique et Théorie des NombresFaculté des Sciences d’OrsayOrsay Cedex 05France
  4. 4.Department of MathematicsU.C.L.A.Los AngelesU.S.A.

Personalised recommendations