Harmonic maps into singular spaces andp-adic superrigidity for lattices in groups of rank one

  • Mikhail Gromov
  • Richard Schoen


Symmetric Space Tangent Cone Nonpositive Curvature Singular Space Euclidean Building 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABB]
    S. B. Alexander, I. D. Berg andR. L. Bishop, The Riemannian obstacle problem,Ill. J. Math. 31 (1987), 167–184.zbMATHGoogle Scholar
  2. [Ag]
    S. Agmon,Unicité et convexité dans les problèmes différentiels, Sém. d’Analyse Sup., Univ. de Montréal, 1965.Google Scholar
  3. [Al]
    F. J. Almgren, Jr., Q-valued functions minimizing Dirichlet’s integral and the regularity of area minimizing rectifiable currents up to codimension two, preprint, Princeton University,Google Scholar
  4. [B]
    K. Brown,Buildings, Springer, New York, 1989.zbMATHGoogle Scholar
  5. [BT]
    F. Bruhat andJ. Tits, Groupes réductifs sur un corps local. I. Données radicielles valuées,Publ. Math. IHES 41 (1972), 5–251.zbMATHGoogle Scholar
  6. [C]
    K. Corlette, Archimedian superrigidity and hyperbolic geometry,Annals of Math., to appear.Google Scholar
  7. [Ch]
    Y. J. Chiang, Harmonic maps of V-manifolds,Ann. Global Anal. Geom. 8 (1990), 315–344.zbMATHCrossRefGoogle Scholar
  8. [DM]
    P. Deligne andG. D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy,Publ. Math. IHES 63 (1986), 5–89.zbMATHGoogle Scholar
  9. [ES]
    J. Eells andJ. H. Sampson, Harmonic mappings of Riemannian manifolds,Amer. J. Math. 86 (1964), 109–160.zbMATHCrossRefGoogle Scholar
  10. [F1]
    H. Federer,Geometric Measure Theory, Springer-Verlag, New York, 1969.zbMATHGoogle Scholar
  11. [F2]
    H. Federer, The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension,Bull. Amer. Math. Soc. 79 (1970), 761–771.Google Scholar
  12. [G]
    H. Garland, P-adic curvature and the cohomology of discrete subgroups,Ann. of Math. 97 (1973), 375–423.CrossRefGoogle Scholar
  13. [GL]
    N. Garofalo andF. H. Lin, Monotonicity properties of variational integrals, Ap weights and unique continuation,Indiana Math. J. 35 (1986), 245–268.zbMATHCrossRefGoogle Scholar
  14. [GP]
    M. Gromov, P. Pansu,Rigidity of lattices: An introduction, to appear in Springer Lecture Notes.Google Scholar
  15. [GPS]
    M. Gromov andI. Piatetski-Shapiro, Non-arithmetic groups in Lobachevsky spaces,Publ. Math. IHES 66 (1988), 93–103.zbMATHGoogle Scholar
  16. [GR]
    H. Garland andM. S. Raghunathan, Fundamental domains for lattices inR-rank 1 groups,Ann. of Math. 92 (1970), 279–326.CrossRefGoogle Scholar
  17. [Gro]
    M. Gromov,Partial differential relations, Springer Verlag, 1986.Google Scholar
  18. [Ham]
    R. Hamilton,Harmonic maps of manifolds with boundary, Lecture Notes471, Springer 1975.Google Scholar
  19. [Har]
    P. Hartman, On homotopic harmonic maps,Can. J. Math. 19 (1967), 673–687.zbMATHGoogle Scholar
  20. [HV]
    P. de la Harpe andA. Valette,La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque175 (1989), Soc. Math. de France.Google Scholar
  21. [K]
    H. Karcher, Riemannian center of mass and mollifier smoothing,Comm. Pure and Appl. Math. 30 (1977), 509–541.zbMATHCrossRefGoogle Scholar
  22. [La1]
    E. M. Landis, A three-sphere theorem,Dokl. Akad. Nauk S.S.S.R. 148 (1963), 277–279. Translated inSoviet Math. 4 (1963), 76–78.Google Scholar
  23. [La2]
    E. M. Landis, Some problems on the qualitative theory of second order elliptic equations (case of several variables),Uspekhi Mat. Nauk. 18 (1963), 3–62. Translated inRussian Math. Surveys 18 (1963), 1–62.Google Scholar
  24. [L]
    M. L. Leite, Harmonic mappings of surfaces with respect to degenerate metrics,Amer. J. Math. 110 (1988), 399–412.zbMATHCrossRefGoogle Scholar
  25. [Lin]
    F. H. Lin, Nonlinear theory of defects in nematic liquid crystals, phase transition and flow phenomena,Comm. Pure Appl. Math. 42 (1989), 789–814.zbMATHCrossRefGoogle Scholar
  26. [Mak]
    V. Makarov, On a certain class of discrete Lobachevsky space groups with infinite fundamental domain of finite measure,Soviet Math. Dokl. 7 (1966), 328–331.zbMATHGoogle Scholar
  27. [Mar]
    G. Margulis, Discrete groups of motions of manifolds of nonpositive curvature,AMS Translations 109 (1977), 33–45.Google Scholar
  28. [Mos]
    G. D. Mostow, On a remarkable class of polyhedra in complex hyperbolic space,Pac. J. Math. 86 (1980), 171–276.zbMATHGoogle Scholar
  29. [Mi]
    K. Miller, Three circles theorems in partial differential equations and applications to improperly posed problems,Arch. for Rat. Mech. and Anal. 16 (1964), 126–154.zbMATHCrossRefGoogle Scholar
  30. [Mo]
    C. B. Morrey,Multiple integrals in the calculus of variations, Springer-Verlag, New York, 1966.zbMATHGoogle Scholar
  31. [N]
    I. G. Nikolaev, Solution of Plateau problem in spaces with curvature ⩽K,Sib, Math. J. 20:2 (1979), 346–353.CrossRefGoogle Scholar
  32. [S]
    R. Schoen, Analytic aspects of the harmonic map problem,Math. Sci. Res. Inst. Publ. vol.2, Springer, Berlin, 1984, 321–358.Google Scholar
  33. [Se]
    A. Selberg, Recent developments in the theory of discontinuous groups of motions of symmetric spaces,Springer Lecture Notes 118 (1970), 99–120.Google Scholar
  34. [Ser]
    J. P. Serre,Trees, Springer Verlag, 1980.Google Scholar
  35. [Sim]
    C. Simpson,Integrality of rigid local systems of rank two on a smooth projective variety, preprint.Google Scholar
  36. [Siu]
    Y. T. Siu, The complex analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds,Ann. of Math. 112 (1980), 73–112.CrossRefGoogle Scholar
  37. [Ste]
    K. Stein, Analytische Zerlegungen komplexer Räume,Math. Ann. 132 (1956), 63–93.zbMATHCrossRefGoogle Scholar
  38. [SU]
    R. Schoen andK. Uhlenbeck, A regularity theory for harmonic maps,J. Diff. Geom. 17 (1982), 307–335.Google Scholar
  39. [SY]
    R. Schoen andS. T. Yau, Harmonic maps and the topology of stable hyper-surfaces and manifolds of nonnegative Ricci curvature,Comment. Math. Helv. 39 (1976), 333–341.CrossRefGoogle Scholar
  40. [V]
    E. Vinberg, Discrete groups generated by reflections in Lobachevsky spaces,Math. USSR-Sb 1 (1967), 429–444.CrossRefGoogle Scholar
  41. [Z]
    W. P. Ziemer,Weakly Differentiable Functions, Springer-Verlag, Grad. Texts in Math., 1989.Google Scholar
  42. [Zim]
    R. J. Zimmer,Ergodic Theory and Semi-simple Groups, Birkhäuser, Boston, Basel, Stuttgart, 1984.Google Scholar

Copyright information

© Publications Mathématiques de L’I.H.É.S. 1992

Authors and Affiliations

  • Mikhail Gromov
    • 1
  • Richard Schoen
    • 2
  1. 1.IHESBures-sur-Yvette
  2. 2.Mathematics DepartmentStanford UniversityStanford

Personalised recommendations