Représentations galoisiennes associées aux représentations automorphes autoduales de GL(n)

  • Laurent Clozel
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [C]
    Automorphic Forms, Representations, and L-functions, Proceedings of the Corvallis Conference,A. Borel etW. Casselman eds,Proc. Symp. Pure Math.,33, A.M.S., Providence, 1979, I, II.Google Scholar
  2. [AA]
    Automorphic Forms, Shimura Varieties, and L-functions, Proceedings of the Ann Arbor Conference,L. Clozel etJ. S. Milne eds, Academic Press, 1990, I, II.Google Scholar
  3. [1]
    J. Adams, D. Vogan,Lifting of characters and Harish-Chandra’s method of descent, preprint.Google Scholar
  4. [2]
    J. Arthur, A Paley-Wiener theorem for real reductive groups,Acta Math.,150 (1983), 1–89.MATHCrossRefMathSciNetGoogle Scholar
  5. [3]
    J. Arthur, L. Clozel,Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Annals of Math. Studies, Princeton U. Press, 1989.Google Scholar
  6. [4]
    D. Blasius, Automorphic forms and Galois representations : some examples,in [AA], II, 1–13.Google Scholar
  7. [5]
    A. Borel, Automorphic L-functions,in [C], II, 27–62.Google Scholar
  8. [6]
    A. Borel, N. Wallach,Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Annals of Math. Studies, Princeton U. Press, 1980.Google Scholar
  9. [7]
    A. Bouaziz, Relèvement des caractères d’un groupe endoscopique pour le changement de baseC/R,Astérisque,171–172 (1989), 163–194.MathSciNetGoogle Scholar
  10. [8]
    L. Clozel, Changement de base pour les représentations tempérées des groupes réductifs réels,Ann. Sc. E.N.S. (4e sér.),15 (1982), 45–115.MATHMathSciNetGoogle Scholar
  11. [9]
    L. Clozel, The fundamental lemma for stable base change,Duke Math. J.,61 (1990), 255–302.MATHCrossRefMathSciNetGoogle Scholar
  12. [10]
    L. Clozel, On the cuspidal cohomology of arithmetic subgroups of GL(2n)…,Duke Math. J.,55 (1987), 475–486.MATHCrossRefMathSciNetGoogle Scholar
  13. [11]
    L. Clozel, Motifs et formes automorphes : applications du principe de fonctorialité,in [AA], I, 77–159.Google Scholar
  14. [12]
    L. Clozel, P. Delorme, Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs II,Ann. Sc. E.N.S. (4e sér.),23 (1990), 193–228.MATHMathSciNetGoogle Scholar
  15. [13]
    P. Delorme, Théorème de Paley-Wiener invariant tordu pour le changement de baseC/R, preprint.Google Scholar
  16. [14]
    T. Enright, Relative Lie algebra cohomology and unitary representations of complex Lie groups,Duke Math. J.,46 (1979), 513–525.MATHCrossRefMathSciNetGoogle Scholar
  17. [15]
    M. Harris, Automorphic forms of σ-cohomology type as coherent cohomology classes,J. Diff. Geom.,32 (1990), 1–63.MATHGoogle Scholar
  18. [16]
    G. Harder, Ueber die Galoiskohomologie halbeinfacher Matrizengruppen II,Math. Zeitschrift,92 (1966), 396–415.MATHCrossRefMathSciNetGoogle Scholar
  19. [17]
    J. Johnson, Stable base changeC/R of certain derived functor modules,Math. Ann.,287 (1990), 467–493.MATHCrossRefMathSciNetGoogle Scholar
  20. [18]
    R. Kottwitz, Rational conjugacy classes in reductive groups,Duke Math. J.,49 (1982), 785–806.MATHCrossRefMathSciNetGoogle Scholar
  21. [19]
    R. Kottwitz, Shimura varieties and twisted orbital integrals,Math. Ann.,269 (1984), 287–300.MATHCrossRefMathSciNetGoogle Scholar
  22. [20]
    R. Kottwitz, Stable trace formula: cuspidal tempered terms,Duke Math. J.,51 (1984), 611–650.MATHCrossRefMathSciNetGoogle Scholar
  23. [21]
    R. Kottwitz, Stable trace formula: elliptic singular terms,Math. Ann.,275 (1986), 365–399.MATHCrossRefMathSciNetGoogle Scholar
  24. [22]
    R. Kottwitz, Shimura varieties and λ-adic representations,in [AA], I, 161–209.Google Scholar
  25. [23]
    R. Kottwitz, en préparation.Google Scholar
  26. [24]
    R. Kottwitz,On the λ-adic representations associated to some simple Shimura varieties, preprint, 1989.Google Scholar
  27. [25]
    J.-P. Labesse,Pseudo-coefficients très cuspidaux et K-théorie, preprint.Google Scholar
  28. [26]
    J.-P. Labesse, J. Schwermer, On liftings and cusp cohomology of arithmetic groups,Inv. Math.,83 (1983), 383–401.CrossRefMathSciNetGoogle Scholar
  29. [27]
    R. P. Langlands,Les débuts d’une formule des traces stable, Publ. Math. Univ. Paris 7, Paris, s.d.Google Scholar
  30. [28]
    R. P. Langlands, Automorphic representations, Shimura varieties, and motives, Ein Märchen,in [C], II, 205–246.Google Scholar
  31. [29]
    R. P. Langlands,On the classification of irreducible representations of real algebraic groups, Institute for Advanced Study, Princeton, 1973.Google Scholar
  32. [30]
    C. Moeglin, J.-L. Waldspurger, Le spectre résiduel de GL(n),Ann. Sc. E.N.S. (4e sér.),22 (1989), 605–674.MATHMathSciNetGoogle Scholar
  33. [31]
    J. Rogawski,Automorphic representations of unitary groups of three variables, Annals of Math. Studies, Princeton U. Press, 1989.Google Scholar
  34. [32]
    W. Scharlau,Quadratic and Hermitian Forms, Springer-Verlag, 1985.Google Scholar
  35. [33]
    D. Shelstad, Characters and inner forms of quasi-split groups overR,Compositio Math.,39 (1979), 11–45.MATHMathSciNetGoogle Scholar
  36. [34]
    D. Shelstad, Base change and a matching theorem for real groups, inNon commutative Harmonic Analysis and Lie Groups, Springer Lecture Notes,880 (1981), 425–482.CrossRefMathSciNetGoogle Scholar
  37. [35]
    D. Shelstad, Endoscopic groups and base changeC/R,Pacific J. Math.,110 (1984), 397–415.MATHMathSciNetGoogle Scholar
  38. [36]
    D. Shelstad,Twisted endoscopic groups in the abelian case, non publié.Google Scholar
  39. [37]
    M.-F. Vignéras,On the global correspondence between GL(n)and division algebras, Institute for Advanced Study, Princeton, 1984.Google Scholar
  40. [38]
    D. Vogan,Representations of real reductive Lie groups, Birkhäuser, 1981.Google Scholar
  41. [39]
    D. Vogan, G. Zuckerman, Unitary representations with non-zero cohomology,Compositio Math.,53 (1984), 51–90.MATHMathSciNetGoogle Scholar

Copyright information

© Publications Mathématiques de L’I.É.E.S. 1991

Authors and Affiliations

  • Laurent Clozel
    • 1
  1. 1.U.R.A. D0752 du C.N.R.S.Université de Paris-SudOrsay

Personalised recommendations