Advertisement

Arithmetic intersection theory

  • Henri Gillet
  • Christophe Soulé
Article

Keywords

Complex Manifold Generic Fibre Chow Group Smooth Form Green Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [EGA IV]
    J. Dieudonné andA. Grothendieck, Eléments de géométrie algébrique,Publ. Math. I.H.E.S.,20 (1964),24 (1965),28 (1966),32 (1967).Google Scholar
  2. [Ar 1]
    S. J. Arakelov, Intersection theory of divisors on an arithmetic surface,Math. USSR Izvestija,8 (1974), 1167–1180.CrossRefGoogle Scholar
  3. [Ar 2]
    S. J. Arakelov, Theory of intersections on an arithmetic surface,Proc. Int. Congr. of Mathematicians,1, Vancouver, 1975, 405–408.Google Scholar
  4. [B-F-M]
    P. Baum, W. Fulton andR. Macpherson, Riemann-Roch for singular varieties,Publ. Math. I.H.E.S.,45 (1975), 101–145.zbMATHGoogle Scholar
  5. [Be 1]
    A. A. Beilinson, Higher regulators and values of L-functions,J. Soviet Math.,30 (1985), 2036–2070.CrossRefGoogle Scholar
  6. [Be 2]
    A. A. Beilinson, Height pairings between algebraic cycles,Contempory Math.,67 (1987), 1–24.Google Scholar
  7. [Bl 1]
    S. Bloch, Height pairings for algebraic cycles,in Proc. Luminy conference on algebraic K-theory (Luminy, 1983),J. Pure Appl. Algebra,34 (1984), 119–145.zbMATHCrossRefGoogle Scholar
  8. [Bl 2]
    S. Bloch, Algebraic K-theory and class-field theory for arithmetic surfaces,Ann. of Math.,114 (1981), 229–265.CrossRefGoogle Scholar
  9. [Bl 3]
    S. Bloch, Algebraic cycles and higher K-theory,Advances in Math.,61 (1986), 267–304.zbMATHCrossRefGoogle Scholar
  10. [B-G-S]
    J. M. Bismut, H. Gillet andC. Soulé,Complex immersions and Arakelov geometry, The Grothendieck Festschrift,1, Progress in Mathematics, Birkhauser, Boston, 1990, 249–331.Google Scholar
  11. [B-G]
    S. Bloch andP. Griffiths,A Theorem about normal functions associated to Lefschetz pencils on algebraic varieties, preprint, 1971.Google Scholar
  12. [B-H]
    A. Borel andA. Haefliger, La classe d’homologie fondamentale d’un espace analytique,Bull. Soc. Math. France,89 (1961), 461–513.zbMATHGoogle Scholar
  13. [B-M]
    A. Borel andJ. Moore, Homology theory for locally compact spaces,Michigan Math. J.,7 (1960), 137–159.zbMATHCrossRefGoogle Scholar
  14. [C]
    J. Cheeger, Multiplication of differential characters, Instituto Nazionale di Alta Mathematica,Symposia Mathematica,XI (1973), 441–445.Google Scholar
  15. [C-S]
    J. Cheeger andJ. Simons, Differential characters and geometric invariants, inGeometry and Topology, Lectures notes in Mathematics,1167, Berlin, Springer Verlag, 1980, 50–80.CrossRefGoogle Scholar
  16. [Co-G]
    M. Cornalba andP. Griffiths, Analytic Cycles and Vector Bundles on Non-compact Algebraic Varieties,Inv. Math.,28 (1975), 1–106.zbMATHCrossRefGoogle Scholar
  17. [De 1]
    P. Deligne, Théorie de Hodge II,Pub. Math. I.H.E.S.,40 (1972), 5–57.Google Scholar
  18. [De 2]
    P. Deligne, Le déterminant de la cohomologie,Contemporary Mathematics,67 (1987), 93–178.Google Scholar
  19. [Do]
    P. Dolbeault, Formes différentielles et cohomologie sur une variété analytique complexe I,Ann. of Math.,64 (1956), 83–130.CrossRefGoogle Scholar
  20. [E-S]
    S. Eilenberg andN. Steenrod,Foundations of algebraic topology, Princeton Univ. Press, 1952.Google Scholar
  21. [F]
    G. Faltings, Calculus on arithmetic surfaces,Ann. of Math.,119 (1984), 387–424.CrossRefGoogle Scholar
  22. [Fu]
    W. Fulton,Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, Band 2, Berlin-Heidelberg, Springer Verlag, 1984.Google Scholar
  23. [Gi 1]
    H. Gillet, Riemann-Roch Theorems for higher algebraic K-theory,Advances in Math.,40 (1981), 203–289.zbMATHCrossRefGoogle Scholar
  24. [Gi 2]
    H. Gillet, Some new Gysin homomorphisms for the Chow homology of varieties,Proc. L.M.S. (3),50 (1980), 57–68.Google Scholar
  25. [Gi 3]
    H. Gillet, An introduction to higher dimensional Arakelov theory,Contemporary Math.,67 (1987), 209–228.Google Scholar
  26. [Gi 4]
    H. Gillet, K-theory and intersection theory revisited, K-theory,1 (1987), 407–415.CrossRefGoogle Scholar
  27. [G-S 1]
    H. Gillet andC. Soulé, Intersection sur les variétés d’Arakelov,C.R. Acad. Sci. Paris,299, Série I, 1984, 563–566.zbMATHGoogle Scholar
  28. [G-S 2]
    H. Gillet andC. Soulé, Classes caractéristiques en théorie d’Arakelov,C.R. Acad. Sci. Paris,301, Série I, 1985, 439–442.zbMATHGoogle Scholar
  29. [G-S 3]
    H. Gillet andC. Soulé, Intersection theory using Adams operations,Inv. Math.,90 (1987), 243–278.zbMATHCrossRefGoogle Scholar
  30. [G-S 4]
    H. Gillet andC. Soulé, Characteristic classes for algebraic vector bundles with Hermitian metrics, I, II,Ann. of Math.,131 (1990), 163–203 and 205–238.CrossRefGoogle Scholar
  31. [G-S 5]
    H. Gillet andC. Soulé, Differential characters and arithmetic intersection theory, inAlgebraic K-Theory: Connections with Geometry and Topology (ed. byJ. F. Jardine andV. P. Snaith), NATO ASI, Series C,279, Kluwer Academic Publishers, 1989, 29–68.Google Scholar
  32. [Gr 1]
    D. Grayson, The K-theory of hereditary categories,J. Pure Appl. Algebra,11 (1977), 67–74.CrossRefGoogle Scholar
  33. [Gr 2]
    D. Grayson, Localization for flat modules in algebraic K-theory,J. Algebra,61 (1979), 463–496.zbMATHCrossRefGoogle Scholar
  34. [G-H]
    P. Griffiths andJ. Harris,Principles of algebraic geometry, John Wiley & Sons, 1978.Google Scholar
  35. [G-H-V]
    W. Greub, S. Halperin andR. Vanstone,Connections, curvature and cohomology,1, New York, Academic Press, 1972.Google Scholar
  36. [Ha]
    R. Hartshorne,Algebraic Geometry, Graduate Texts in Mathematics,52, New York, Springer Verlag, 1977.zbMATHGoogle Scholar
  37. [H-L]
    M. Herera andD. Lieberman, Duality and the deRham cohomology of infinitesimal neighborhoods,Inv. Math.,13 (1971), 97–124.CrossRefGoogle Scholar
  38. [Hi]
    H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero,Ann. of Math.,79 (1964), 109–326.CrossRefGoogle Scholar
  39. [Hr]
    P. Hriljac, Heights and Arakelov’s Intersection Theory,Am. J. Math.,107 (1985), 23–38.zbMATHCrossRefGoogle Scholar
  40. [H-P]
    M. Harris andD. H. Phong, Cohomologie de Dolbeault à croissance logarithmique à l’infini,C.R. Acad. Sci. Paris,302 (1986), 307–310.zbMATHGoogle Scholar
  41. [J]
    J.-P. Jouanolou, Une suite exacte de Mayer-Vietoris en K-théorie algébrique, inAlgebraic K-theory I, Proceedings of the 1972 Battelle Institute Conference, Lecture Notes in Mathematics,341, Berlin, Springer Verlag, 1973, 293–316.Google Scholar
  42. [K 1]
    J. King, The currents defined by algebraic varieties,Acta Math.,127 (1971), 185–220.zbMATHCrossRefGoogle Scholar
  43. [K 2]
    J. King, Global residues and intersections on a complex manifold,Trans. Am. Math. Soc.,192 (1974), 163–199.zbMATHCrossRefGoogle Scholar
  44. [K 3]
    J. King, Refined residues, Chern forms, and intersections, inValue distribution theory, Part A, New York, Dekker, 1974, 169–190.Google Scholar
  45. [Kl]
    S. Kleiman, Motives, inAlgebraic Geometry, Oslo, 1970 (F. Oort, ed.), Wolters-Noordhoff, Groningen, 1972, 53–82.Google Scholar
  46. [K-M]
    F. Knudsen andD. Mumford, The projectivity of the moduli space of stable curves I, preliminaries on “det” and “Div”,Math. Scand.,39 (1976), 19–55.zbMATHGoogle Scholar
  47. [L 1]
    S. Lang,Differential Manifolds, New York, Springer Verlag, 1985.zbMATHGoogle Scholar
  48. [L 2]
    S. Lang,Algebraic Number Theory, Addison-Wesley (Reading), 1970.zbMATHGoogle Scholar
  49. [Le]
    P. Lelong, Intégration sur un ensemble analytique complexe,Bull. Soc. Math. France,95 (1957), 239–262.Google Scholar
  50. [Q]
    D. Quillen, Higher Algebraic K-theory I, inAlgebraic K-theory I, Lecture Notes in Mathematics,341, Berlin, Springer Verlag, 1973, 85–147.Google Scholar
  51. [deRh]
    G. DeRham,Variétés différentiables: formes, courants, formes harmoniques, Paris, Hermann, 1960.Google Scholar
  52. [R]
    J. Roberts, Chow’s moving lemma, inAlgebraic Geometry, Oslo, 1970 (F. Oort ed.), Wolters-Noordhoff, Groningen, 1972, 89–96.Google Scholar
  53. [Sch]
    L. Schwartz,Théorie des distributions, nouvelle édition, Paris, Hermann, 1966.zbMATHGoogle Scholar
  54. [Se]
    J.-P. Serre,Algèbre locale, Multiplicités, 3rd ed., Lecture Notes in Mathematics,11, Berlin, Springer Verlag, 1975.zbMATHGoogle Scholar
  55. [Sha]
    B. V. Shabat,Distribution of values of holomorphic mappings, Translations of Mathematical Monographs,61, Am. Math. Soc. (Providence), 1985.Google Scholar
  56. [She]
    V. V. Shechtmann, Riemann-Roch’s theorem in Algebraic K-theory,Dep. Viniti, No. 2425-79 (1979).Google Scholar
  57. [So]
    C. Soulé, Opérations en K-théorie algébrique,Canadian Journal of Math.,37 (1985), 488–550.zbMATHGoogle Scholar
  58. [Sp]
    E. Spanier,Algebraic Topology, New York, McGraw-Hill, 1966.zbMATHGoogle Scholar
  59. [Sz 1]
    L. Szpiro, Séminaire sur les pinceaux de courbes de genre au moins deux,Astérisque, no 86 (1981), Société Math. de France.Google Scholar
  60. [Sz 2]
    L. Szpiro, Présentation de la théorie d’Arakelov,Contemporary Math.,67 (1987), 279–293.Google Scholar
  61. [V]
    J.-L. Verdier, Le théorème de Riemann-Roch pour les intersections complètes,Astérisque, no 36–37 (1976), 189–228.Google Scholar
  62. [W]
    C. Weibel, Homotopy algebraic K-theory,Contemporary Mathematics,83 (1989), 461–488.Google Scholar
  63. [We 1]
    A. Weil, Sur l’analogie entre les corps de nombres algébriques et les corps de fonctions algébriques, inCollected Papers,1, New York, Springer Verlag, 1980, 236–240.Google Scholar
  64. [We 2]
    A. Weil, Letter to Simone Weil [1940a], inCollected Papers,1, New York, Springer Verlag, 1980, 244–255.Google Scholar
  65. [Wel]
    R. O. Wells,Differential analysis on complex manifolds, Englewood Cliffs, N.J., Prentice Hall, 1973.zbMATHGoogle Scholar

Copyright information

© Publications Mathématiques de L’I.É.E.S. 1990

Authors and Affiliations

  • Henri Gillet
    • 1
    • 2
  • Christophe Soulé
    • 1
    • 2
  1. 1.Department of Mathematics, Statistics and Computer ScienceUniversity of Illinois at ChicagoChicagoUSA
  2. 2.I.H.E.S.Bures-sur-YvetteFrance

Personalised recommendations