Advertisement

Semianalytic and subanalytic sets

  • Edward Bierstone
  • Pierre D. Milman
Article

Keywords

Smooth Point Real Analytic Mapping Normal Crossing Analytic Manifold Real Analytic Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    E. Bierstone, Differentiable functions,Bol. Soc. Brasil Mat.,11 (1980), 139–180.zbMATHCrossRefGoogle Scholar
  2. [2]
    E. Bierstone andP. D. Milman, Algebras of composite differentiable functions,Proc. Sympos. Pure Math.,40, Part 1 (1983), 127–136.Google Scholar
  3. [3]
    P. J. Cohen, Decision procedures for real andp-adic fields,Comm. Pure Appl. Math.,22 (1969), 131–151.zbMATHCrossRefGoogle Scholar
  4. [4]
    M. Coste, Ensembles semi-algébriques, Géométrie algébrique réelle et formes quadratiques (Proceedings, Rennes, 1981),Lecture Notes in Math., No. 959, Berlin-Heidelberg-New York, Springer, 1982, p. 109–138.CrossRefGoogle Scholar
  5. [5]
    J. Denef andL. van den Dries,p-adic and real subanalytic sets,Ann. of Math. (2) (to appear).Google Scholar
  6. [6]
    Z. Denkowska, S. Łojasiewicz andJ. Stasica, Certaines propriétés élémentaires des ensembles sous-analytiques.Bull. Acad. Polon. Sci. Sér. Sci. Math.,27 (1979), 529–536.zbMATHGoogle Scholar
  7. [7]
    Z. Denkowska, S. Łojasiewicz andJ. Stasica, Sur le théorème du complémentaire pour les ensembles sous-analytiques,Bull. Acad. Polon. Sci. Sér. Sci. Math.,27 (1979), 537–539.zbMATHGoogle Scholar
  8. [8]
    Z. Denkowska, S. Łojasiewicz andJ. Stasica, Sur le nombre des composantes connexes de la section d’un sous-analytique,Bull. Acad. Polon. Sci. Sér. Sci. Math.,30 (1982), 333–335.zbMATHGoogle Scholar
  9. [9]
    Z. Denkowska andJ. Stasica,Ensembles sous-analytiques à la polonaise (preprint, 1985).Google Scholar
  10. [10]
    G. Efroymson, Substitution in Nash functions,Pacific J. Math.,63 (1976), 137–145.zbMATHGoogle Scholar
  11. [11]
    A. M. Gabrielov, Projections of semi-analytic sets,Functional Anal. Appl.,2 (1968), 282–291 =Funkcional. Anal. i Prilozen. 2, No. 4 (1968), 18–30.zbMATHCrossRefGoogle Scholar
  12. [12]
    A. M. Gabrielov, Formal relations between analytic functions,Math. USSR Izvestija,7 (1973), 1056–1088 =Izv. Akad. Nauk SSSR Ser. Mat.,37 (1973), 1056–1090.CrossRefGoogle Scholar
  13. [13]
    R. M. Hardt, Stratification of real analytic mappings and images,Invent. Math.,28 (1975), 193–208.zbMATHCrossRefGoogle Scholar
  14. [14]
    R. M. Hardt, Triangulation of subanalytic sets and proper light subanalytic maps,Invent. Math.,38 (1977), 207–217.zbMATHCrossRefGoogle Scholar
  15. [15]
    R. M. Hardt, Some analytic bounds for subanalytic sets,Differential Geometric Control Theory, Boston, Birkhäuser, 1983, p. 259–267.Google Scholar
  16. [16]
    H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II,Ann. of Math. (2),79 (1964), 109–326.CrossRefGoogle Scholar
  17. [17]
    H. Hironaka, Subanalytic sets,Number Theory, Algebraic Geometry and Commutative Algebra, Tokyo, Kinokuniya, 1973, p. 453–493.Google Scholar
  18. [18]
    H. Hironaka,Introduction to real-analytic sets and real-analytic maps, Istituto Matematico “L. Tonelli”, Pisa, 1973.Google Scholar
  19. [19]
    S. Łojasiewicz, Sur le problème de la division,Studia Math.,8 (1959), 87–136.Google Scholar
  20. [20]
    S. Łojasiewicz, Triangulation of semi-analytic sets,Ann. Scuola Norm. Sup. Pisa (3),18 (1964), 449–474.Google Scholar
  21. [21]
    S. Łojasiewicz,Ensembles semi-analytiques, Inst. Hautes Études Sci., Bures-sur-Yvette, 1964.Google Scholar
  22. [22]
    S. Łojasiewicz, Sur la semi-analyticité des images inverses par l’application-tangente,Bull. Acad. Polon. Sci. Sér. Sci. Math.,27 (1979), 525–527.Google Scholar
  23. [23]
    B. Malgrange, Frobenius avec singularités, 2. Le cas général,Invent. Math.,39 (1977), 67–89.zbMATHCrossRefGoogle Scholar
  24. [24]
    R. Narasimhan, Introduction to the theory of analytic spaces,Lecture Notes in Math., No. 25, Berlin-Heidelberg-New York, Springer, 1966.zbMATHGoogle Scholar
  25. [25]
    J.-B. Poly andG. Raby, Fonction distance et singularités,Bull. Sci. Math. (2),108 (1984), 187–195.zbMATHGoogle Scholar
  26. [26]
    M. Tamm, Subanalytic sets in the calculus of variations,Acta Math.,146 (1981), 167–199.zbMATHCrossRefGoogle Scholar
  27. [27]
    H. Whitney, Local properties of analytic varieties,Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton, Princeton Univ. Press, 1965, p. 205–244.Google Scholar
  28. [28]
    O. Zariski, Local uniformization theorem on algebraic varieties,Ann. of Math. (2),41 (1940), 852–896.CrossRefGoogle Scholar
  29. [29]
    O. Zariski andP. Samuel,Commutative Algebra, Vol. II, Berlin-Heidelberg-New York, Springer, 1975.Google Scholar

Copyright information

© Publications Mathématiques de L’I.É.E.S. 1988

Authors and Affiliations

  • Edward Bierstone
    • 1
  • Pierre D. Milman
    • 1
  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations