A proof of the C1 stability conjecture

  • Ricardo Mañé


Periodic Point Compact Neighborhood Homoclinic Point Closing Lemma Stable Subspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Andronov, L. Pontrjagin, Systèmes grossiers,Dokl. Akad. Nauk. SSSR,14 (1937), 247–251.Google Scholar
  2. [2]
    D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature,Proc. Steklov Inst. Math.,90 (1967), 1–235.Google Scholar
  3. [3]
    R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms,Springer Lecture Notes in Math.,470 (1975).Google Scholar
  4. [4]
    J. Franks, Necessary conditions for stability of diffeomorphisms,Trans. A.M.S.,158 (1971), 301–308.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    J. Guckenheimer, A strange, strange attractor, inThe Hopf bifurcation and its applications, Applied Mathematics Series,19 (1976), 165–178, Springer Verlag.MathSciNetGoogle Scholar
  6. [6]
    M. Hirsch, C. Pugh, M. Shub, Invariant manifolds,Springer Lecture Notes in Math.,583 (1977).Google Scholar
  7. [7]
    R. Labarca, M. J. Pacifico, Stability of singular horseshoes,Topology,25 (1986), 337–352.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    S. T. Liao, On the stability conjecture,Chinese Ann. Math.,1 (1980), 9–30.MATHMathSciNetGoogle Scholar
  9. [9]
    R. Mañé, Persistent manifolds are normally hyperbolic,Trans. A.M.S.,246 (1978), 261–283.MATHCrossRefGoogle Scholar
  10. [10]
    R. Mañé, Expansive diffeomorphisms, inDynamical Systems-Warwick 1974,Springer Lecture Notes in Math.,468 (1975), 162–174.Google Scholar
  11. [11]
    R. Mañé, Characterization of AS diffeomorphisms,Proc. ELAM III, Springer Lecture Notes in Math.,597 (1977), 389–394.Google Scholar
  12. [12]
    R. Mañé, An ergodic closing lemma,Ann. of Math.,116 (1982), 503–540.CrossRefMathSciNetGoogle Scholar
  13. [13]
    R. Mañé, On the creation of homoclinic points,Publ. Math. I.H.E.S.,66 (1987), 139–159.Google Scholar
  14. [14]
    S. Newhouse, Lectures on dynamical systems,Progr. in Math.,8 (1980), 1–114.MathSciNetGoogle Scholar
  15. [15]
    J. Palis, A note on Ω-stability, inGlobal Analysis, Proc. Sympos. Pure Math., A.M.S.,14 (1970), 221–222.MathSciNetGoogle Scholar
  16. [16]
    J. Palis, S. Smale, Structural stability theorems, inGlobal Analysis, Proc. Sympos. Pure Math., A.M.S.,14 (1970), 223–231.MathSciNetGoogle Scholar
  17. [17]
    V. A. Pliss, Analysis of the necessity of the conditions of Smale and Robbin for structural stability of periodic systems of differential equations,Diff. Uravnenija,8 (1972), 972–983.MATHMathSciNetGoogle Scholar
  18. [18]
    V. A. Pliss, On a conjecture due to Smale,Diff. Uravnenija,8 (1972), 268–282.MATHMathSciNetGoogle Scholar
  19. [19]
    C. Pugh, The closing lemma,Amer. J. Math.,89 (1967), 956–1009.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    J. Robbin, A structural stability theorem,Ann. of Math.,94 (1971), 447–493.CrossRefMathSciNetGoogle Scholar
  21. [21]
    C. Robinson, Cr structural stability implies Kupka-Smale, inDynamical Systems, Salvador, 1971, Academic Press 1973, 443–449.Google Scholar
  22. [22]
    C. Robinson, Structural stability of C1 diffeomorphisms,J. Diff. Eq.,22 (1976), 28–73.MATHCrossRefGoogle Scholar
  23. [23]
    M. Shub, Stabilité globale des systèmes dynamiques,Astérisque, 56 (1978).Google Scholar
  24. [24]
    S. Smale, Diffeomorphisms with many periodic points, inDifferential and Combinatorial Topology, Princeton Univ. Press, 1964, 63–80.Google Scholar
  25. [25]
    S. Smale, Differentiable dynamical systems,Bull. A.M.S.,73 (1967), 747–817.CrossRefMathSciNetGoogle Scholar
  26. [26]
    S. Smale, The Ω-stability theorem, inGlobal Analysis, Proc. Sympos. Pure Math., A.M.S.,14 (1970), 289–297.MathSciNetGoogle Scholar

Copyright information

© Publications Mathématiques de L’I.É.E.S. 1987

Authors and Affiliations

  • Ricardo Mañé
    • 1
  1. 1.Instituto de Matemática Pura e Aplicada (IMPA)Rio de Janeiro - RJ

Personalised recommendations