Advertisement

Moduli of representations of the fundamental group of a smooth projective variety I

  • Carlos T. Simpson
Article

Keywords

Modulus Space Vector Bundle Line Bundle Hilbert Scheme Coherent Sheave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ar]
    M. Artin, Algebraic approximation of structures over complete local rings,Publ. Math. I.H.E.S.,36 (1969), 23–58.MATHMathSciNetGoogle Scholar
  2. [Be]
    J. Bernstein, Course onD-modules, Harvard, 1983–1984.Google Scholar
  3. [BT]
    A. Borel, J. Tits, Eléments unipotents et sous-groupes paraboliques de groupes réductifs I,Invent. Math.,12 (1971), 95–104.MATHCrossRefMathSciNetGoogle Scholar
  4. [Co]
    K. Corlette, Flat G-bundles with canonical metrics,J. Diff. Geom.,28 (1988), 361–382.MATHMathSciNetGoogle Scholar
  5. [De1]
    P. Deligne, Equations différentielles à points singuliers réguliers,Lect. Notes in Math.,163, Springer, New York (1970).MATHGoogle Scholar
  6. [De2]
    P. Deligne, Letter.Google Scholar
  7. [DM]
    P. Deligne andJ. Milne, Tannakian categories, inLect. Notes in Math.,900, Springer (1982), 101–228.MathSciNetCrossRefGoogle Scholar
  8. [Do1]
    S. K. Donaldson, Anti self dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles,Proc. London Math. Soc. (3),50 (1985), 1–26.MATHCrossRefMathSciNetGoogle Scholar
  9. [Do2]
    S. K. Donaldson, Infinite determinants, stable bundles, and curvature,Duke Math. J.,54 (1987), 231–247.MATHCrossRefMathSciNetGoogle Scholar
  10. [Do3]
    S. K. Donaldson, Twisted harmonic maps and self-duality equations,Proc. London Math. Soc.,55 (1987), 127–131.MATHCrossRefMathSciNetGoogle Scholar
  11. [Gi]
    D. Gieseker, On the moduli of vector bundles on an algebraic surface,Ann. of Math.,106 (1977), 45–60.CrossRefMathSciNetGoogle Scholar
  12. [GM]
    W. Goldman andJ. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds,Publ. Math. I.H.E.S.,67 (1988), 43–96.MATHMathSciNetGoogle Scholar
  13. [Gr1]
    A. Grothendieck,Eléments de géométrie algébrique, Several volumes inPubl. Math. I.H.E.S. Google Scholar
  14. [Gr2]
    A. Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique, IV : Les schémas de Hilbert,Sém. Bourbaki, Exposé 221, volume 1960–1961.Google Scholar
  15. [Gr3]
    A. Grothendieck, Crystals and the De Rham cohomology of schemes,Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam (1968).Google Scholar
  16. [GS]
    V. Guillemin, S. Sternberg, Birational equivalence in symplectic geometry,Invent. Math.,97 (1989), 485–522.MATHCrossRefMathSciNetGoogle Scholar
  17. [Ha]
    R. Hartshorne,Algebraic Geometry, Springer, New York (1977).MATHGoogle Scholar
  18. [Hi1]
    N. J. Hitchin, The self-duality equations on a Riemann surface,Proc. London Math. Soc. (3),55 (1987), 59–126.MATHCrossRefMathSciNetGoogle Scholar
  19. [Hi2]
    N. J. Hitchin, Stable bundles and integrable systems,Duke Math. J.,54 (1987), 91–114.MATHCrossRefMathSciNetGoogle Scholar
  20. [KN]
    G. Kempf, L. Ness, On the lengths of vectors in representation spaces,Lect. Notes in Math.,732, Springer, Heidelberg (1982), 233–243.Google Scholar
  21. [Ki]
    F. Kirwan,Cohomology of Quotients in Symplectic and Algebraic Geometry, Princeton Univ. Press, Princeton (1984).MATHGoogle Scholar
  22. [Le]
    J. Le Potier, Fibrés de Higgs et systèmes locaux,Séminaire Bourbaki 737 (1991).Google Scholar
  23. [Lu]
    D. Luna, Slices étales,Bull. Soc. Math. France, Mémoire 33 (1973), 81–105.MATHGoogle Scholar
  24. [Ma1]
    M. Maruyama, Moduli of stable sheaves, I:J. Math. Kyoto Univ.,17-1 (1977), 91–126; II:Ibid.,18-3 (1978), 557–614.MathSciNetGoogle Scholar
  25. [Ma2]
    M. Maruyama, On boundedness of families of torsion free sheaves,J. Math. Kyoto Univ.,21-4 (1981), 673–701.MathSciNetGoogle Scholar
  26. [Mt]
    Matsushima, See reference inGeometric Invariant Theory.Google Scholar
  27. [MR1]
    V. B. Mehta andA. Ramanathan, Semistable sheaves on projective varieties and their restriction to curves,Math. Ann.,258 (1982), 213–224.MATHCrossRefMathSciNetGoogle Scholar
  28. [MR2]
    V. B. Mehta andA. Ramanathan, Restriction of stable sheaves and representations of the fundamental group,Invent. Math.,77 (1984), 163–172.MATHCrossRefMathSciNetGoogle Scholar
  29. [Mo]
    V. V. Morozov, Proof of the regularity theorem (Russian),Usp. M. Nauk.,XI (1956), 191–194.Google Scholar
  30. [Mu]
    D. Mumford,Geometric Invariant Theory, Springer Verlag, New York (1965).MATHGoogle Scholar
  31. [NS]
    M. S. Narasimhan andC. S. Seshadri, Stable and unitary bundles on a compact Riemann surface,Ann. of Math.,82 (1965), 540–564.CrossRefMathSciNetGoogle Scholar
  32. [Ni1]
    N. Nitsure, Moduli space of semistable pairs on a curve,Proc. London Math. Soc.,62 (1991), 275–300.MATHCrossRefMathSciNetGoogle Scholar
  33. [Ni2]
    N. Nitsure, Moduli of semi-stable logarithmic connections,Jour. Amer. Math. Soc.,6 (1993), 597–610.MATHCrossRefMathSciNetGoogle Scholar
  34. [No]
    M. V. Nori, On the representations of the fundamental group,Compositio Math.,33 (1976), 29–41.MATHMathSciNetGoogle Scholar
  35. [Ox]
    W. M. Oxbury,Spectral curves of vector bundle endomorphisms, preprint, Kyoto University (1988).Google Scholar
  36. [Ru]
    W. Rudin,Real and Complex Analysis, Mac Graw-Hill, New York (1974).MATHGoogle Scholar
  37. [Sa]
    N. Saavedra Rivano, Catégories tannakiennes,Lect. Notes in Math.,265 Springer, (1972).Google Scholar
  38. [Se1]
    C. S. Seshadri, Space of unitary vector bundles on a compact Riemann surface,Ann. of Math.,85 (1967), 303–336.CrossRefMathSciNetGoogle Scholar
  39. [Se2]
    C. S. Seshadri, Mumford’s conjecture for GL(2) and applications,Bombay Colloquium, Oxford University Press (1968), 347–371.Google Scholar
  40. [Si1]
    C. Simpson, Yang-Mills theory and uniformization,Lett. Math. Phys.,14 (1987), 371–377.MATHCrossRefMathSciNetGoogle Scholar
  41. [Si2]
    C. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization,Journal of the A.M.S.,1 (1988), 867–918.MATHMathSciNetGoogle Scholar
  42. [Si3]
    C. Simpson, Nonabelian Hodge theory,International Congress of Mathematicians, Kyoto 1990, Proceedings, Springer, Tokyo (1991), 747–756.Google Scholar
  43. [Si4]
    C. Simpson, A lower bound for the monodromy of ordinary differential equations,Analytic and Algebraic Geometry, Tokyo 1990, Proceedings, Springer, Tokyo (1991), 198–230.Google Scholar
  44. [Si5]
    C. Simpson, Higgs bundles and local systems,Publ. Math. I.H.E.S.,75 (1992), 5–95.MATHMathSciNetGoogle Scholar
  45. [Uh]
    K. K. Uhlenbeck, Connections with Lp bounds on curvature,Commun. Math. Phys.,83 (1982), 31–42.MATHCrossRefMathSciNetGoogle Scholar
  46. [UY]
    K. K. Uhlenbeck andS. T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles,Comm. Pure and Appl. Math.,39-S (1986), 257–293.CrossRefMathSciNetGoogle Scholar

Copyright information

© Publications Mathématiques de L’I.H.É.S. 1994

Authors and Affiliations

  • Carlos T. Simpson
    • 1
  1. 1.Laboratoire de Topologie et Géométrie URA 1408, CNRS UFR-MIGUniversité Paul-SabatierToulouse CedexFrance

Personalised recommendations