Diophantine approximations and foliations

  • Michael McQuillan


In this paper we indicate the proof of an effective version of the Green-Griffiths conjecture for surfaces of general type and positive second Segre class (i.e.c 1 2 >c 2). Naturally this effective version is stronger than the Green-Griffiths conjecture itself.


Line Bundle Exceptional Divisor Singular Locus Finite Measure DIOPHANTINE Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A-S-S]
    E. Arrondo, I. Sols, B. Speiser,Global Moduli For Contacts, MSRI preprint (1992).Google Scholar
  2. [B-B]
    P. Baum, R. Bott, Singularities Of Holomorphic Foliations,J. Differential Geometry7 (1972), 279–342.MATHMathSciNetGoogle Scholar
  3. [B1]
    F. Bogomolov, Families Of Curves On Surfaces Of General Type,Soviet Math. Dokl.18 (1977), 1294–1297.MATHGoogle Scholar
  4. [B2]
    F. Bogomolov, Holomorphic tensors and vector bundles on projective varieties,Math. USSR Izv.13 (1978), 499–555.MATHCrossRefGoogle Scholar
  5. [Bo]
    E. Bombieri, The Mordell Conjecture Revisited,Ann. Scuola Norm. Sup. Pisa Cl. Sci (4)17 (1990), no 4, 615–640. Errata-corrigé: The Mordell conjecture revisited,Ann. Scuola Norm. Sup. Pisa Cl. Sci (4)18 (1991), no 3, 473.MATHMathSciNetGoogle Scholar
  6. [C]
    A. Connes,Non Commutative Geometry, Academic Press, 1994.Google Scholar
  7. [C-M]
    D. Cerveau, J.-F. Mattei, Formes intégrables holomorphes singulières,Astérisque vol. 97 (1982).Google Scholar
  8. [D]
    M. Deschamps, Courbes de genres géométrique borné sur une surface de type général (d’après F. A. Bogomolov),Séminaire Bourbaki519 (1977/1978).Google Scholar
  9. [De1]
    J. P. Demailly, Monge-Ampère operators, Lelong numbers, and intersection theory,Complex Analysis and Geometry, V. Ancona and A. Silva Eds, Plenum, New York, London (1993).Google Scholar
  10. [De2]
    J. P. Demailly,Algebraic Criteria for Kobayashi Hyperbolic Varieties and Jet Differentials, Lecture notes of a course given at AMS summer research Institute, Santa Cruz (1995).Google Scholar
  11. [De3]
    J. P. Demailly, Regularization of closed positive currents and intersection theory,JAG1 (1992), 361–409.MATHMathSciNetGoogle Scholar
  12. [E]
    T. Ekedahl, Foliations and Inseparable Morphisms, Algebraic Geometry, Bowdoin,Proc. Symp. Pure Math.46, S. Bloch ed., AMS, Providence (1987), 139–149.Google Scholar
  13. [F]
    G. Faltings, Diophantine Approximation on abelian Varieties,Ann. Math.133 (1991), 549–576.CrossRefMathSciNetGoogle Scholar
  14. [Fu]
    W. Fulton,Intersection Theory, New York, Springer Verlag, Berlin, Heidelberg (1984).MATHGoogle Scholar
  15. [Fuj]
    T. Fujita, On the Zariski problem,Proc. Japan Acad.55 (1979), 106–110.MATHCrossRefGoogle Scholar
  16. [G-G]
    M. Green, P. Griffiths, Two applications of algebraic geometry to entire holomorphic mappings,The Chern Symposium, New York, Springer Verlag, Berlin, Heidelberg, (1979), 41–74.Google Scholar
  17. [H]
    R. Hartshorne,Ample subvarieties of algebraic varieties, LNM156 (1970).Google Scholar
  18. [J]
    J. P. Jouanolou, Hypersurface solutions d’une équation de Pfaff analytique,Math. Ann.232 (1978), 239–245.MATHCrossRefMathSciNetGoogle Scholar
  19. [L1]
    S. Lang,Number Theory III, Encyclopedia of Mathematical Sciences, volume 60, New York, Springer Verlag, Berlin, Heidelberg, 1991.MATHGoogle Scholar
  20. [L2]
    S. Lang,Introduction to complex hyperbolic spaces, New York, Springer Verlag, Berlin, Heidelberg (1987).MATHGoogle Scholar
  21. [L-C]
    S. Lang, W. Cherry,Topics In Nevanlinna Theory, LNM1433 (1990).Google Scholar
  22. [L-Y]
    S. Lu, S. T. Yau, Holomorphic curves in surfaces of general type,Proc. Nat. Acad. Sci. USA87 (1990), 80–82.MATHCrossRefMathSciNetGoogle Scholar
  23. [M1]
    M. McQuillan, A new proof of the Bloch conjecture,JAG5 (1996), 107–117.MATHMathSciNetGoogle Scholar
  24. [M2]
    M. McQuillan,A Dynamical Counterpart To Faltings’ Diophantine Approximation On Abelian Varieties, IHES preprint, 1996.Google Scholar
  25. [M3]
    M. McQuillan,La mappa di Faltings e la construzione grafica di Macpherson, lectures given at the Università di Napoli, “Federico II”, to appear.Google Scholar
  26. [Mi1]
    Y. Miyaoka, Algebraic Surfaces With Positive Index,Classification of algebraic and analytic manifolds (Kata Symposium Proc. 1982),Progress in Math.39, Birkhauser, Boston Basel Stuttgart (1983), 281–301.Google Scholar
  27. [Mi2]
    Y. Miyaoka, Deformations of Morphisms Along a Foliation,Algebraic Geometry, Bowdoin, Proc. Symp. Pure Math.46, S. Bloch ed., AMS, Providence (1987), 245–268.Google Scholar
  28. [N]
    M. Nakamaye, conversation at tea, MSRI, 1992.Google Scholar
  29. [No]
    J. Noguchi, On the value distribution of meromorphic mappings of covering spaces over Cm into algebraic varieties,J. Math. Soc. Japan37 (1985), 295–313.MATHMathSciNetCrossRefGoogle Scholar
  30. [R]
    M. Reid, Bogomolov’s Theoremc12⩽ 4c2,Proc. Intern. Colloq. Algebraic Geometry (Kyoto, 1977), 623–642.Google Scholar
  31. [S]
    A. Seidenberg, Reduction of singularities of the differential equation Ady=Bdx, American Journ. Math.89 (1967), 248–269.MathSciNetGoogle Scholar
  32. [Sa]
    F. Sakai, Weil Divisors on normal surfaces,Duke Math. J.51 (1984), 877–887.MATHCrossRefMathSciNetGoogle Scholar
  33. [S-B]
    N. Shepherd-Baron, Miyaoka’s Theorems, Flips And Abundance For Algebraic Threefolds (János Kollár ed.),Asterisque vol.211 (1992), 103–114.Google Scholar
  34. [Si]
    Y. T. Siu, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents,Invent. Math. (1974), 53–156.Google Scholar
  35. [So]
    C. Soulé,Lectures On Arakelov Geometry, Cambridge Studies in Advanced Mathematics33, Cambridge, 1992.Google Scholar
  36. [U]
    E. Ullmo,Positivité et discrétion des points algébriques des courbes, to appear.Google Scholar
  37. [V1]
    P. Vojta,Diophantine Approximations and Value Distribution Theory, LNM1239 (1987).Google Scholar
  38. [V2]
    P. Vojta, On Algebraic Points On Curves,Comp. Math.78 (1991), 29–36.MATHMathSciNetGoogle Scholar
  39. [V3]
    P. Vojta, Siegel’s Theorem In The Compact Case,Ann. Math.133 (1991), 509–548.CrossRefMathSciNetGoogle Scholar
  40. [V4]
    P. Vojta, Integral points on subvarieties of semi-abelian varieties I, to appear.Google Scholar

Copyright information

© Publications Mathematiques de L’I.H.E.S 1998

Authors and Affiliations

  • Michael McQuillan
    • 1
  1. 1.All Souls CollegeOxfordAngleterre

Personalised recommendations