Advertisement

Computation of the metaplectic kernel

  • Gopal Prasad
  • Andrei S. Rapinchuk
Article

Keywords

Division Algebra Open Subgroup Maximal Compact Subgroup Quadratic Extension Central Simple Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Artin andJ. Tate,Class Field Theory, New York, Benjamin, 1974.Google Scholar
  2. [2]
    A. Bak, Le problème de sous-groupes congruence et le problème métaplectique pour les groupes classiques de rang >1,C. R. Acad. Sci. Paris,292 (1981), 307–310.zbMATHMathSciNetGoogle Scholar
  3. [3]
    A. Bak andU. Rehmann, The congruence subgroup and metaplectic problems for SLn ≥ 2 of division algebras,J. Algebra,78 (1982), 475–547.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Borel andJ. Tits, Groupes réductifs,Publ. Math. I.H.E.S.,27 (1965), 55–150.MathSciNetGoogle Scholar
  5. [5]
    A. Borel andJ. Tits, Compléments à l’article “Groupes réductifs”,Publ. Math. I.H.E.S.,41 (1972), 253–276.zbMATHMathSciNetGoogle Scholar
  6. [6]
    N. Bourbaki,Topologie générale, Ch. 3–4, Paris, Hermann, 1960.Google Scholar
  7. [7]
    N. Bourbaki,Groupes et algèbres de Lie, Ch. 4–6, Paris, Hermann, 1968.Google Scholar
  8. [8]
    J. W. S. Cassels andA. Fröhlich (editors),Algebraic number theory (Proc. Instructional Conf., Brighton, 1965), London, Academic Press, and Washington, D. C., Thompson, 1967.zbMATHGoogle Scholar
  9. [9]
    P. Deligne, Extensions centrales non résiduellement finies de groupes arithmétiques,C. R. Acad. Sci. Paris,287 (1978), 203–208.zbMATHMathSciNetGoogle Scholar
  10. [10]
    P. Deligne, Extensions centrales de groupes algébriques simplement connexes et cohomologie galoisienne,Publ. Math. I.H.E.S.,84 (1996), 35–89.zbMATHMathSciNetGoogle Scholar
  11. [11]
    V. Deodhar, On central extensions of rational points of algebraic groups,Amer. J. Math.,100 (1978), 303–386.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    G. Harder, Über die Galoiskohomologie halbeinfacher algebraischer Gruppen,J. reine und angew. Math.,274–275 (1975), 125–138.MathSciNetGoogle Scholar
  13. [13]
    S. Helgason,Differential Geometry and Symmetric Spaces, New York, Academic Press, 1962.zbMATHGoogle Scholar
  14. [14]
    D. A. Kazhdan andS. J. Patterson, Metaplectic Forms,Publ. Math. I.H.E.S.,59 (1984), 35–142.zbMATHMathSciNetGoogle Scholar
  15. [15]
    J. Klose, Metaplektische Erweiterungen von Quaternionenschiefkörpern,Math. Z.,193 (1986), 625–649.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    M. Lazard, Groupes analytiquesp-adiques,Publ. Math. I.H.E.S.,26 (1965), 5–219.Google Scholar
  17. [17]
    A. Lubotzky, Subgroup growth and congruence subgroups,Invent. Math.,119 (1995), 267–295.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    G. A. Margulis, Finiteness of quotient groups of discrete groups,Funct. Anal. Appl.,13 (1979), 178–187.MathSciNetGoogle Scholar
  19. [19]
    G. A. Margulis, On the multiplicative group of a quaternion algebra over a global field,Soviet Math. Dokl.,21 (1980), 780–784.zbMATHGoogle Scholar
  20. [20]
    G. W. Mackey, Les ensembles boréliens et les extensions des groupes,J. Math. Pures Appl.,36 (1957), 171–178.zbMATHMathSciNetGoogle Scholar
  21. [21]
    H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés,Ann. Sci. École Norm. Sup.,2 (1969), 1–62.zbMATHGoogle Scholar
  22. [22]
    C. Moore, Group extensions ofp-adic and adelic linear groups,Publ. Math. I.H.E.S.,35 (1968), 5–70.zbMATHGoogle Scholar
  23. [23]
    V. P. Platonov andA. S. Rapinchuk, On the group of rational points of three-dimensional groups,Soviet Math. Dokl.,20 (1979), 693–697.zbMATHGoogle Scholar
  24. [24]
    V. P. Platonov andA. S. Rapinchuk,Algebraic Groups and Number Theory, “Pure and Applied Mathematics” series, Vol. 139, New York, Academic Press, 1993.Google Scholar
  25. [25]
    V. P. Platonov andA. S. Rapinchuk, Abstract properties of S-arithmetic groups and the congruence subgroup problem,Russian Acad. Sci. Izv. Math.,40 (1993), 455–476.CrossRefMathSciNetGoogle Scholar
  26. [26]
    R. Pierce,Associative Algebras, Heidelberg, Springer Verlag, 1982.zbMATHGoogle Scholar
  27. [27]
    G. Prasad, A variant of a theorem of Calvin Moore,C. R. Acad. Sci. Paris,302 (1986), 405–408.zbMATHGoogle Scholar
  28. [28]
    G. Prasad, Semi-simple groups and arithmetic subgroups,Proc. ICM-90 (Kyoto), Vol. II, 821–832.Google Scholar
  29. [29]
    G. Prasad andM. S. Raghunathan, On the congruence subgroup problem: Determination of the metaplectic kernel,Invent. Math.,71 (1983), 21–42.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    G. Prasad andM. S. Raghunathan, Topological central extensions of semi-simple groups over local fields,Ann. Math.,119 (1984), 143–268.CrossRefMathSciNetGoogle Scholar
  31. [31]
    G. Prasad andM. S. Raghunathan, On the Kneser-Tits problem,Comment. Math. Helv.,60 (1985), 107–121.zbMATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    G. Prasad andM. S. Raghunathan, Topological central extensions of SL1(D),Invent. Math.,92 (1988), 645–689.zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    M. S. Raghunathan, Torsion in cocompact lattices in coverings ofSpin(2,n),Math. Ann.,266 (1984), 403–419.zbMATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    M. S. Raghunathan, On the group of norm 1 elements in a division algebra,Math. Ann.,279 (1988), 457–484.zbMATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    M. S. Raghunathan, The congruence subgroup problem,Proc. Hyderabad Conf. on Algebraic Groups (ed. by S. Ramanan with the cooperation of C. Musili and N. M. Kumar), Manoj Prakashan, 1991, 465–494.Google Scholar
  36. [36]
    A. S. Rapinchuk, Multiplicative arithmetic of division algebras over number fields and the metaplectic problem,Math. USSR Izvestiya,31 (1988), 349–379.zbMATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    A. S. Rapinchuk,Combinatorial theory of arithmetic groups, Preprint of the Institute of Mathematics, Acad. Sci. of Belarus (Minsk), No. 20 (420), 1990.Google Scholar
  38. [38]
    A. S. Rapinchuk, Congruence subgroup problem for algebraic groups: old and new,Astérisque,209 (1992), 73–84.MathSciNetGoogle Scholar
  39. [39]
    C. Riehm, The norm 1 group of\(\mathfrak{p} - acid\)-adic division algebra,Amer. J. Math.,92 (1970), 499–523.zbMATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    J.-P. Serre,Cohomologie galoisienne, Lect. Notes Math., No.5, Heidelberg, Springer Verlag, 1994.zbMATHGoogle Scholar
  41. [41]
    J.-P. Serre,Local Fields, Heidelberg, Springer Verlag, 1995.Google Scholar
  42. [42]
    J.-P. Serre,Lie Algebras and Lie Groups, Lect. Notes Math., No.1500, Heidelberg, Springer Verlag, 1992.zbMATHGoogle Scholar
  43. [43]
    W. Scharlau,Quadratic and hermitian forms, Heidelberg, Springer Verlag, 1985.zbMATHGoogle Scholar
  44. [44]
    B. Sury, Congruence subgroup problem for anisotropic groups over semi-local rings,Proc. Indian Acad. Sci.,101 (1991), 87–110.zbMATHCrossRefMathSciNetGoogle Scholar
  45. [45]
    R. G. Thompson, Commutators in the special and general linear groups,Trans. A.M.S.,101 (1961), 16–33.zbMATHCrossRefGoogle Scholar
  46. [46]
    J. Tits, Classification of algebraic semisimple groups,Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math., Vol.9, Amer. Math. Soc., Providence, R. I., 1966, 33–62.Google Scholar
  47. [47]
    D. Toledo, Projective varieties with non-residually finite fundamental group,Publ. Math. I.H.E.S.,77 (1993), 103–119.zbMATHMathSciNetGoogle Scholar
  48. [48]
    G. Tomanov, On Grunwald-Wang’s theorem,J. reine und angew. Math.,389 (1988), 209–220.zbMATHMathSciNetGoogle Scholar
  49. [49]
    B. Weisfeiler, Semi-simple algebraic groups splitting over a quadratic extension,Math. USSR Izvestiya,5 (1971), 57–73.CrossRefGoogle Scholar
  50. [50]
    D. Wigner, Algebraic cohomology of topological groups,Trans. A.M.S.,178 (1973), 83–93.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Publications Mathématiques de L’I.É.E.S. 1996

Authors and Affiliations

  • Gopal Prasad
    • 1
  • Andrei S. Rapinchuk
    • 2
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations