A1-homotopy theory of schemes

  • Fabien Morel
  • Vladimir Voevodsky
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Artin, On the joins of Hensel rings,Advances in Math. 7 (1971), 282–296.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    A. K. Bousfield andE. M. Friedlander, Homotopy theory of Γ-spaces, spectra, and bisimplicial sets,Lecture Notes in Math. 658 (1978), 80–130.MathSciNetGoogle Scholar
  3. [3]
    A. K. Bousfield andD. M. Kan,Homotopy limits, completions and localizations, Lecture Notes in Math. 304 (1972), Springer-Verlag.Google Scholar
  4. [4]
    A. K. Bousfield, Constructions of factorization systems in categories,J. Pure Appl. Alg. 9 (1977), 207–220.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    A. K. Bousfield, Homotopical localizations of spaces,American J. of Math. 119 (1997), 1321–1354.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    K. S. Brown, Abstract homotopy theory and generalized sheaf cohomology,Trans. A.M.S., vol.186 (1973), 419–458.CrossRefGoogle Scholar
  7. [7]
    K. S. Brown andS. M. Gersten, Algebraic K-theory and generalizied sheaf cohomology,Lecture Notes in Math. 341 (1973), 266–292.CrossRefMathSciNetGoogle Scholar
  8. [8]
    B. Dayton, K-theory of tetrahedra,J. Algebra (1979), 129–144.Google Scholar
  9. [9]
    W. G. Dwyer, P. S. Hirschhorn, andD. M. Kan, Model categories and general abstract homotopy theory,In preparation.Google Scholar
  10. [10]
    E. Dror-farjoun, Cellular Spaces, Null Spaces and Homotopy Localizations,Lecture Notes in Math. 1622 (1973), Springer-Verlag.Google Scholar
  11. [11]
    R. Fritsch andR. A. Piccinini,Cellular structures in topology, Cambridge, Cambridge Univ. Press, 1990.MATHGoogle Scholar
  12. [12]
    E. M. Friedlander andB. Mazur,Filtrations on the homology of algebraic varieties, vol. 529 ofMemoir of the AMS, AMS, Providence, RI, 1994.Google Scholar
  13. [13]
    A. Grothendieck, M. Artin andJ.-L. Verdier, Théorie des topos et cohomologie étale des schémas (SGA 4),Lecture Notes in Math. 269, 270, 305 (1972–1973), Heidelberg, Springer.Google Scholar
  14. [14]
    A. Grothendieck andJ. Dieudonné,Étude globale élémentaire de quelques classes de morphismes (EGA 2), Publ. Math. IHES 8, 1961.Google Scholar
  15. [15]
    A. Grothendieck andJ. Dieudonné,Étude locale des schémas et des morphismes de schémas (EGA 4), Publ. Math. IHES 20, 24, 28, 32, 1964–1967.Google Scholar
  16. [16]
    M. Hovey, B. Shipley andJ. Smith, Symmetric spectra,Preprint, 1996.Google Scholar
  17. [17]
    J. F. Jardine, Simplicial objects in a Grothendieck topos,Contemporary Math. 55(1) (1986), 193–239.MathSciNetGoogle Scholar
  18. [18]
    J. F. Jardine, Simplicial presheaves,J. Pure Appl. Algebra 47 (1987), 35–87.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    J. F. Jardine, Stable homotopy theory of simplicial presheaves,Canadian J. Math. 39(3) (1987), 733–747.MATHMathSciNetGoogle Scholar
  20. [20]
    A. Joyal, Letter to A. Grothendieck (1984).Google Scholar
  21. [21]
    S. Maclane,Categories for working mathematician, vol. 5 ofGraduate texts in Mathematics, Springer-Verlag, 1971.Google Scholar
  22. [22]
    J. P. May,Simplicial objects in algebraic topology, Van Nostrand, 1968.Google Scholar
  23. [23]
    J. P. Meyer, Cosimplicial homotopies,Proc. AMS 108(1) (1990), 9–17.MATHCrossRefGoogle Scholar
  24. [24]
    J. S. Milne,étale Cohomology, Princeton Math. Studies33, Princeton University Press (1980).Google Scholar
  25. [25]
    Y. Nisnevich, The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory. InAlgebraic K-theory: connections with geometry and topology, p. 241–342. Kluwer Acad. Publ., Dordrecht, 1989.Google Scholar
  26. [26]
    D. Quillen, Homotopical algebra,Lecture Notes in Math. 43 (1973), Berlin, Springer-Verlag.Google Scholar
  27. [27]
    G. B. Segal, Classifying spaces and spectral sequences,Publ. Math. IHES 34 (1968), 105–112.MATHGoogle Scholar
  28. [28]
    A. Suslin, andV. Voevodsky, Singular homology of abstract algebraic varieties,Invent. math. 123 (1996), 61–94.MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    R. Thomason, Algebraic K-theory and étale cohomology,Ann. Sci. ENS 18 (1985), 437–552.MATHMathSciNetGoogle Scholar
  30. [30]
    R. Thomason andT. Trobaugh, Higher algebraic K-theory of schemes and of derived categories, InThe Grothendieck festchrift, vol. 3 (1990), 247–436, Boston, Birkhauser.Google Scholar
  31. [31]
    V. Voevodsky, Homology of schemes,Selecta Mathematica, New Series 2(1) (1996), 111–153.MATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    V. Voevodsky, TheA 1-homotopy theory,Proceedings of the international congress of mathematicians, Berlin, 1998.Google Scholar
  33. [33]
    C. Weibel, Homotopy K-theory,Contemp. Math. 83 (1987), 461–488. TheoremMathSciNetGoogle Scholar

Copyright information

© Publications Mathematiques de L’I.H.E.S. 1999

Authors and Affiliations

  • Fabien Morel
    • 1
  • Vladimir Voevodsky
    • 2
  1. 1.Institut de Mathématiques de JussieuUniversité Paris 7 Denis DiderotParis cedex
  2. 2.Institute for Advanced StudyOlden LanePrincetonU.S.A.

Personalised recommendations