A1-homotopy theory of schemes

  • Fabien Morel
  • Vladimir Voevodsky


Canonical Isomorphism Weak Equivalence Homotopy Category Canonical Morphism Noetherian Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Artin, On the joins of Hensel rings,Advances in Math. 7 (1971), 282–296.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    A. K. Bousfield andE. M. Friedlander, Homotopy theory of Γ-spaces, spectra, and bisimplicial sets,Lecture Notes in Math. 658 (1978), 80–130.MathSciNetGoogle Scholar
  3. [3]
    A. K. Bousfield andD. M. Kan,Homotopy limits, completions and localizations, Lecture Notes in Math. 304 (1972), Springer-Verlag.Google Scholar
  4. [4]
    A. K. Bousfield, Constructions of factorization systems in categories,J. Pure Appl. Alg. 9 (1977), 207–220.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    A. K. Bousfield, Homotopical localizations of spaces,American J. of Math. 119 (1997), 1321–1354.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    K. S. Brown, Abstract homotopy theory and generalized sheaf cohomology,Trans. A.M.S., vol.186 (1973), 419–458.CrossRefGoogle Scholar
  7. [7]
    K. S. Brown andS. M. Gersten, Algebraic K-theory and generalizied sheaf cohomology,Lecture Notes in Math. 341 (1973), 266–292.CrossRefMathSciNetGoogle Scholar
  8. [8]
    B. Dayton, K-theory of tetrahedra,J. Algebra (1979), 129–144.Google Scholar
  9. [9]
    W. G. Dwyer, P. S. Hirschhorn, andD. M. Kan, Model categories and general abstract homotopy theory,In preparation.Google Scholar
  10. [10]
    E. Dror-farjoun, Cellular Spaces, Null Spaces and Homotopy Localizations,Lecture Notes in Math. 1622 (1973), Springer-Verlag.Google Scholar
  11. [11]
    R. Fritsch andR. A. Piccinini,Cellular structures in topology, Cambridge, Cambridge Univ. Press, 1990.zbMATHGoogle Scholar
  12. [12]
    E. M. Friedlander andB. Mazur,Filtrations on the homology of algebraic varieties, vol. 529 ofMemoir of the AMS, AMS, Providence, RI, 1994.Google Scholar
  13. [13]
    A. Grothendieck, M. Artin andJ.-L. Verdier, Théorie des topos et cohomologie étale des schémas (SGA 4),Lecture Notes in Math. 269, 270, 305 (1972–1973), Heidelberg, Springer.Google Scholar
  14. [14]
    A. Grothendieck andJ. Dieudonné,Étude globale élémentaire de quelques classes de morphismes (EGA 2), Publ. Math. IHES 8, 1961.Google Scholar
  15. [15]
    A. Grothendieck andJ. Dieudonné,Étude locale des schémas et des morphismes de schémas (EGA 4), Publ. Math. IHES 20, 24, 28, 32, 1964–1967.Google Scholar
  16. [16]
    M. Hovey, B. Shipley andJ. Smith, Symmetric spectra,Preprint, 1996.Google Scholar
  17. [17]
    J. F. Jardine, Simplicial objects in a Grothendieck topos,Contemporary Math. 55(1) (1986), 193–239.MathSciNetGoogle Scholar
  18. [18]
    J. F. Jardine, Simplicial presheaves,J. Pure Appl. Algebra 47 (1987), 35–87.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    J. F. Jardine, Stable homotopy theory of simplicial presheaves,Canadian J. Math. 39(3) (1987), 733–747.zbMATHMathSciNetGoogle Scholar
  20. [20]
    A. Joyal, Letter to A. Grothendieck (1984).Google Scholar
  21. [21]
    S. Maclane,Categories for working mathematician, vol. 5 ofGraduate texts in Mathematics, Springer-Verlag, 1971.Google Scholar
  22. [22]
    J. P. May,Simplicial objects in algebraic topology, Van Nostrand, 1968.Google Scholar
  23. [23]
    J. P. Meyer, Cosimplicial homotopies,Proc. AMS 108(1) (1990), 9–17.zbMATHCrossRefGoogle Scholar
  24. [24]
    J. S. Milne,étale Cohomology, Princeton Math. Studies33, Princeton University Press (1980).Google Scholar
  25. [25]
    Y. Nisnevich, The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory. InAlgebraic K-theory: connections with geometry and topology, p. 241–342. Kluwer Acad. Publ., Dordrecht, 1989.Google Scholar
  26. [26]
    D. Quillen, Homotopical algebra,Lecture Notes in Math. 43 (1973), Berlin, Springer-Verlag.Google Scholar
  27. [27]
    G. B. Segal, Classifying spaces and spectral sequences,Publ. Math. IHES 34 (1968), 105–112.zbMATHGoogle Scholar
  28. [28]
    A. Suslin, andV. Voevodsky, Singular homology of abstract algebraic varieties,Invent. math. 123 (1996), 61–94.zbMATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    R. Thomason, Algebraic K-theory and étale cohomology,Ann. Sci. ENS 18 (1985), 437–552.zbMATHMathSciNetGoogle Scholar
  30. [30]
    R. Thomason andT. Trobaugh, Higher algebraic K-theory of schemes and of derived categories, InThe Grothendieck festchrift, vol. 3 (1990), 247–436, Boston, Birkhauser.Google Scholar
  31. [31]
    V. Voevodsky, Homology of schemes,Selecta Mathematica, New Series 2(1) (1996), 111–153.zbMATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    V. Voevodsky, TheA 1-homotopy theory,Proceedings of the international congress of mathematicians, Berlin, 1998.Google Scholar
  33. [33]
    C. Weibel, Homotopy K-theory,Contemp. Math. 83 (1987), 461–488. TheoremMathSciNetGoogle Scholar

Copyright information

© Publications Mathematiques de L’I.H.E.S. 1999

Authors and Affiliations

  • Fabien Morel
    • 1
  • Vladimir Voevodsky
    • 2
  1. 1.Institut de Mathématiques de JussieuUniversité Paris 7 Denis DiderotParis cedex
  2. 2.Institute for Advanced StudyOlden LanePrincetonU.S.A.

Personalised recommendations