Loop groups and equations of KdV type

  • Graeme Segal
  • George Wilson


  1. [1]
    H. Airault, H. P. McKean, J. Moser, Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem,Comm. Pure. Appl. Math.30(1977), 95–148.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    M. Adler andJ. Moser, On a class of polynomials connected with the Korteweg-de Vries equation,Comm. Math. Phys.61 (1978), 1–30.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    H. F. Baker, Note on the foregoing paper “Commutative ordinary differential operators”, byJ. L. Burchnall andT. W. Chaundy,Proc. Royal Soc. London (A)118 (1928), 584–593.CrossRefGoogle Scholar
  4. [4a]
    J. L. Burchnall, T. W. Chaundy, Commutative ordinary differential operators,Proc. London Math. Soc.21 (1923), 420–440;CrossRefGoogle Scholar
  5. [4b]
    , Commutative ordinary differential operators,Proc. Royal Soc. London (A) 118 (1928), 557–583;CrossRefGoogle Scholar
  6. [4c]
    , Commutative ordinary differential operators II. The identity Pn=Qm,Proc. Royal Soc. London (A) 134 (1932), 471–485.CrossRefGoogle Scholar
  7. [5a]
    E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations: I.Proc. Japan Acad.57A (1981), 342–347;Google Scholar
  8. [5b]
    Ibid., 387–392;Google Scholar
  9. [5c]
    .J. Phys. Soc. Japan 50 (1981), 3806–3812;MATHCrossRefMathSciNetGoogle Scholar
  10. [5d]
    .Physica 4D (1982), 343–365;MathSciNetGoogle Scholar
  11. [5e]
    .Publ. RIMS, Kyoto Univ. 18 (1982), 1111–1119;MATHMathSciNetGoogle Scholar
  12. [5f]
    .J. Phys. Soc. Japan 50 (1981), 3813–3818;MATHCrossRefMathSciNetGoogle Scholar
  13. [5g]
    .Publ. RIMS, Kyoto Univ. 18 (1982), 1077–1110.MATHMathSciNetGoogle Scholar
  14. [6]
    V. G. Drinfel’d, V. V. Sokolov, Equations of Korteweg-de Vries type and simple Lie algebras,Dokl. Akad. Nauk SSSR258 (1) (1981), 11–16;MathSciNetGoogle Scholar
  15. [6a]
    ,Soviet Math. Dokl. 23 (1981), 457–462.MATHGoogle Scholar
  16. [7]
    C. D’Souza, Compactification of generalized Jacobians,Proc. Ind. Acad. Sci.88A (1979), 421–457.MathSciNetGoogle Scholar
  17. [8]
    F. Ehlers, H. Knörrer, An algebro-geometric interpretation of the Bäcklund transformation for the Kortewegde Vries equation,Comment. Math. Helvetici57 (1982), 1–10.MATHCrossRefGoogle Scholar
  18. [9]
    I. M. Gel’fand, L. A. Dikii, Fractional powers of operators and Hamiltonian systems,Funct. Anal. Appl.10 (4) (1976), 13–29 (Russian), 259–273 (English).MATHMathSciNetGoogle Scholar
  19. [10]
    I. M. Krichever, Integration of non-linear equations by methods of algebraic geometry,Funct. Anal. Appl.11 (1) (1977), 15–31 (Russian), 12–26 (English).MATHCrossRefGoogle Scholar
  20. [11]
    I. M. Krichever, Methods of algebraic geometry in the theory of non-linear equations,Uspekhi Mat. Nauk32 (6) (1977), 183–208;MATHGoogle Scholar
  21. [11a]
    ,Russian Math. Surveys 32 (6) (1977), 185–213.MATHCrossRefGoogle Scholar
  22. [12]
    B. A. Kupershmidt, G. Wilson, Modifying Lax equations and the second Hamiltonian structure,Inventiones Math.62 (1981), 403–436.CrossRefMathSciNetGoogle Scholar
  23. [13]
    I. G. Macdonald,Symmetric functions and Hall polynomials, Oxford University Press, 1979.Google Scholar
  24. [14]
    I. Yu. Manin, Algebraic aspects of non-linear differential equations,Itogi Nauki i Tekhniki, ser. Sovremennye Problemi Matematiki11 (1978), 5–152;MathSciNetGoogle Scholar
  25. [14a]
    ,J. Sov. Math. 11 (1) (1979), 1–122.MATHCrossRefGoogle Scholar
  26. [15]
    D. Mumford,Abelian varieties, Oxford University Press, 1974.Google Scholar
  27. [16]
    D. Mumford, An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related non-linear equations,Proceedings of Symposium on Algebraic Geometry (M. Nagata, ed.), Kinokuniya, Tokyo, 1978.Google Scholar
  28. [17]
    A. Pressley, G. Segal,Loop groups and their representations (Book in preparation; Oxford University Press).Google Scholar
  29. [18]
    G. Segal, Unitary representations of some infinite dimensional groups,Commun. Math. Phys.80 (1981), 301–342.MATHCrossRefGoogle Scholar
  30. [19]
    B. Simon, Notes on infinite determinants of Hilbert space operators,Adv. in Math.24 (1977), 244–273.MATHGoogle Scholar
  31. [20]
    V. V. Sokolov, A. B. Shabat, (L, A)-pairs and a substitution of Riccati type,Funct. Anal. Appl.14 (2) (1980), 79–80 (Russian), 148–150 (English).MATHCrossRefMathSciNetGoogle Scholar
  32. [21]
    J.-L. Verdier, Equations différentielles algébriques,Séminaire Bourbaki (1977–1978), Exposé 512 =Lecture notes in Math.710, 101–122.Google Scholar
  33. [22]
    G. Wilson, Commuting flows and conservation laws for Lax equations,Math. Proc. Camb. Phil. Soc.86 (1979), 131–143.MATHCrossRefGoogle Scholar
  34. [23]
    V. E. Zakharov, A. B. Shabat, Integration of the non-linear equations of mathematical physics by the inverse scattering method II,Funct. Anal. Appl.13 (3) (1979), 13–22 (Russian), 166–174 (English).MathSciNetGoogle Scholar
  35. [24]
    P. Deligne, M. Rapoport, Les schémas de modules de courbes elliptiques, inModular functions of one variable, II (P. Deligne andW. Kuyk, eds.),Lecture Notes in Math.349, Springer, 1973.Google Scholar
  36. [25]
    H. P. McKean, E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points,Comm. Pure Appl. Math.29 (1976), 143–226.MATHCrossRefMathSciNetGoogle Scholar
  37. [26]
    M. Mulase, Geometry of soliton equations,MSRI preprint 035-83, Berkeley (1983).Google Scholar
  38. [27]
    M. Mulase, Algebraic geometry of soliton equations I,MSRI preprint 040-83, Berkeley (1983).Google Scholar
  39. [28]
    M. Mulase, Structure of the solution space of soliton equations,MSRI preprint 041-83, Berkeley (1983).Google Scholar
  40. [29]
    M. Mulase, Complete integrability of the Kadomtsev-Petviashvili equation,MSRI preprint 053-83, Berkeley (1983).Google Scholar
  41. [30]
    M. Mulase, Algebraic geometry of soliton equations,Proc. Japan Acad.59,Ser. A (1983), 285–288.MATHMathSciNetCrossRefGoogle Scholar
  42. [31]
    M. Mulase, Cohomological structure of solutions of soliton equations, isospectral deformation of ordinary differential operators and a characterization of Jacobian varieties,MSRI preprint 003-84-7, Berkeley (1984).Google Scholar
  43. [32]
    M. Sato, Y. Sato,Soliton equations as dynamical systems on infinite dimensional Grassmann manifold, Preprint, 13 pp. (date unknown).Google Scholar
  44. [33]
    T. Shiota,Characterization of Jacobian varieties in terms of soliton equations, Preprint, 63 pp., Harvard University (1984).Google Scholar
  45. [34]
    C. J. Rego, The compactified Jacobian,Ann. Scient. Ec. Norm. Sup.13 (1980), 211–223.MATHMathSciNetGoogle Scholar
  46. [35]
    G. Wilson, Habillage et fonctionsτ, C. R. Acad. Sc. Paris,299, Sér. I, no 13 (1984), 587–590.MATHGoogle Scholar
  47. [36]
    B. A. Dubrovin, Theta functions and non-linear equations,Uspekhi Mat. Nauk36 (2) (1981), 11–80;MathSciNetGoogle Scholar
  48. [36a]
    ,Russian Math. Surveys 36 (2) (1981), 11–92.CrossRefMathSciNetGoogle Scholar

Copyright information

© Publications Mathématiques de L’I.É.E.S. 1985

Authors and Affiliations

  • Graeme Segal
    • 1
  • George Wilson
    • 1
  1. 1.Mathematical InstituteUniversity of OxfordOxford

Personalised recommendations