Orbihedra of nonpositive curvature

  • Werner Ballmann
  • Michael Brin


A 2-dimensional orbihedron of nonpositive curvature is a pair (X, Γ), where X is a 2-dimensional simplicial complex with a piecewise smooth metric such that X has nonpositive curvature in the sense of Alexandrov and Busemann and Γ is a group of isometries of X which acts properly discontinuously and cocompactly. By analogy with Riemannian manifolds of nonpositive curvature we introduce a natural notion of rank 1 for (X, Γ) which turns out to depend only on Γ and prove that, if X is boundaryless, then either (X, Γ) has rank 1, or X is the product of two trees, or X is a thick Euclidean building. In the first case the geodesic flow on X is topologically transitive and closed geodesics are dense.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AlBi]
    S. B. Alexander andR. L. Bishop, The Hadamard-Cartan theorem in locally convex metric spaces,L’Enseignement math.,36 (1990), 309–320.Google Scholar
  2. [Ale]
    A. D. Alexandrov, A theorem on triangles in a metric space and some applications,Trudy Math. Inst. Steklov,38 (1951), 5–23 (Russian).Google Scholar
  3. [Ba1]
    W. Ballmann, Axial isometries of manifolds of nonpositive curvature,Math. Ann.,259 (1982), 131–144.MATHCrossRefGoogle Scholar
  4. [Ba2]
    W. Ballmann,Lectures on Spaces of Nonpositive Curvature, Birkhäuser Verlag, 1995.Google Scholar
  5. [Ba3]
    W. Ballmann, Nonpositively curved manifolds of higher rank,Annals of Math.,122 (1985), 597–609.CrossRefGoogle Scholar
  6. [BaBr]
    W. Ballmann andM. Brin, Polygonal complexes and combinatorial group theory,Geometriae Dedicata,50 (1994), 165–191.MATHCrossRefGoogle Scholar
  7. [BBE]
    W. Ballmann, M. Brin andP. Eberlein, Structure of manifolds of nonpositive curvature, I,Annals of Math.,122 (1985), 171–203.CrossRefGoogle Scholar
  8. [BBS]
    W. Ballmann, M. Brin andR. Spatzier, Structure of manifolds of nonpositive curvature, II,Annals of Math.,122 (1985), 205–235.CrossRefGoogle Scholar
  9. [BaBu]
    W. Ballmann andS. Buyalo,Nonpositively curved metrics on 2-polyhedra, Math. Zeitschrift (to appear).Google Scholar
  10. [Bro]
    K. S. Brown,Buildings, Springer-Verlag, 1988.Google Scholar
  11. [BrTi]
    F. Bruhat andJ. Tits, Groupes réductifs sur un corps local, I, Données radicielles valuées,Publications Math. IHES,40 (1972), 5–251.Google Scholar
  12. [BuSp]
    K. Burns andR. Spatzier, Manifolds of nonpositive curvature and their buildings,Publications Math. IHES,65 (1987), 35–59.MATHGoogle Scholar
  13. [Bus]
    H. Busemann, Spaces with nonpositive curvature,Acta Mathematica,80 (1948), 259–310.CrossRefGoogle Scholar
  14. [ChEb]
    S.-S. Chen andP. Eberlein, Isometry groups of simply connected manifolds of nonpositive curvature,Ill. J. Math.,24 (1980), 73–103.MATHGoogle Scholar
  15. [CFS]
    I. P. Cornfeld, S. V. Fomin and Ya. G.Sinai,Ergodic Theory, Springer-Verlag, 1982.Google Scholar
  16. [Eb1]
    P. Eberlein, Lattices in spaces of nonpositive curvature,Annals of Math.,111 (1980), 435–476.CrossRefGoogle Scholar
  17. [Eb2]
    P. Eberlein, Geodesic rigidity in compact nonpositively curved manifolds,Trans. Amer. Math. Soc.,268 (1981), 411–443.MATHCrossRefGoogle Scholar
  18. [EbHe]
    P. Eberlein andJ. Heber, A differential geometric characterization of symmetric spaces of higher rank,Publications Math. IHES,71 (1990), 33–44.MATHGoogle Scholar
  19. [Gr1]
    M. Gromov,Hyperbolic groups, Essays in Group Theory (S. M. Gersten, ed.), MSRI Publ. 8, Springer-Verlag, 1987, 75–264.Google Scholar
  20. [Gr2]
    M. Gromov,Structures métriques pour les variétés riemanniennes, rédigé par J. Lafontaine et P. Pansu, Cedic/Fernand Nathan, 1981.Google Scholar
  21. [Kle]
    B. Kleiner,A metric characterization of Tits buildings, in preparation (1995).Google Scholar
  22. [Kni]
    G. Knieper, Das Wachstum der Äquivalenzklassen geschlossener Geodätischen in kompakten Mannigfaltigkeiten,Archiv. Math.,40 (1983), 559–568.MATHCrossRefGoogle Scholar
  23. [LySc]
    R. Lyndon andP. Schupp,Combinatorial Group Theory, Springer-Verlag, 1977.Google Scholar
  24. [Mor]
    M. Morse, A fundamental class of geodesics on any surface of genus greater than one,Trans. Amer. Math. Soc.,26 (1924), 25–60.CrossRefGoogle Scholar
  25. [Ti1]
    J. Tits, Free subgroups in linear groups,J. Algebra,20 (1972), 250–270.MATHCrossRefGoogle Scholar
  26. [Ti2]
    J. Tits, Buildings of spherical type and finite BN-pairs,Lecture Notes in Math.,386, Springer-Verlag, 1974.Google Scholar
  27. [Wal]
    A. Wald, Begründung einer koordinatenlosen Differentialgeometrie der Flächen,Ergebnisse math. Kolloquium Wien,7 (1935), 24–46.Google Scholar

Copyright information

© Publications Mathématiques de L’I.É.E.S. 1995

Authors and Affiliations

  • Werner Ballmann
    • 1
  • Michael Brin
    • 2
  1. 1.Mathematisches Institut der Universität BonnBonnGermany
  2. 2.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations