Topological quantum field theories

  • Michael Atiyah


Modulus Space Symplectic Manifold Conformal Field Theory Elliptic Genus Closed Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. F. Atiyah, New invariants of three and four dimensional manifolds, inThe Mathematical Heritage of Herman Weyl, Proc. Symp. Pure Math.,48, American Math. Soc. (1988), 285–299.MathSciNetGoogle Scholar
  2. [2]
    S. K. Donaldson, Polynomial invariants for smooth four-manifolds, to appear inTopology.Google Scholar
  3. [3]
    A. Floer, Morse theory for fixed points of symplectic diffeomorphisms,Bull. A.M.S.,16 (1987), 279–281.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Floer,An instanton invariant for three manifolds, Courant Institute preprint, to appear.Google Scholar
  5. [5]
    M. Gromov, Pseudo-holomorphic curves in symplectic manifolds,Invent. Math.,82 (1985), 307–347.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    N. J. Hitchin, The self-duality equations on a Riemann surface,Proc. London Math. Soc. (3),55 (1987), 59–126.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    D. Johnson,A geometric form of Casson’s invariant and its connection with Reidemeister torsion, unpublished lecture notes.Google Scholar
  8. [8]
    V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials,Ann. of Math.,126 (1987), 335–388.CrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Pressley andG. B. Segal,Loop Groups, Oxford University Press (1988).Google Scholar
  10. [10]
    G. B. Segal,The definition of conformal field theory (to appear).Google Scholar
  11. [11]
    E. Witten, Super-symmetry and Morse theory,J. Diff. Geom.,17 (4) (1982), 661–692.zbMATHMathSciNetGoogle Scholar
  12. [12]
    E. Witten, Quantum field theory and the Jones polynomial,Comm. Math. Phys. (to appear).Google Scholar
  13. [13]
    E. Witten, Topological quantum field theory,Comm. Math. Phys.,117 (1988), 353–386.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    E. Witten, Topological sigma models,Comm. Math. Phys.,118 (1988), 411–449.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    E. Witten, 2 + 1 dimensional gravity as an exactly soluble system,Nucl. Phys. B,311 (1988/89), 46–78.CrossRefMathSciNetGoogle Scholar
  16. [16]
    E. Witten, Topology changing amplitudes in 2 + 1 dimensional gravity,Nucl. Phys. B (to appear).Google Scholar
  17. [17]
    E. Witten, Elliptic genera and quantum field theory,Comm. Math. Phys.,109 (1987), 525–536.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Publications Mathématiques de L’I.É.E.S. 1988

Authors and Affiliations

  • Michael Atiyah
    • 1
  1. 1.The Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations