Topological quantum field theories

  • Michael Atiyah


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. F. Atiyah, New invariants of three and four dimensional manifolds, inThe Mathematical Heritage of Herman Weyl, Proc. Symp. Pure Math.,48, American Math. Soc. (1988), 285–299.MathSciNetGoogle Scholar
  2. [2]
    S. K. Donaldson, Polynomial invariants for smooth four-manifolds, to appear inTopology.Google Scholar
  3. [3]
    A. Floer, Morse theory for fixed points of symplectic diffeomorphisms,Bull. A.M.S.,16 (1987), 279–281.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Floer,An instanton invariant for three manifolds, Courant Institute preprint, to appear.Google Scholar
  5. [5]
    M. Gromov, Pseudo-holomorphic curves in symplectic manifolds,Invent. Math.,82 (1985), 307–347.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    N. J. Hitchin, The self-duality equations on a Riemann surface,Proc. London Math. Soc. (3),55 (1987), 59–126.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    D. Johnson,A geometric form of Casson’s invariant and its connection with Reidemeister torsion, unpublished lecture notes.Google Scholar
  8. [8]
    V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials,Ann. of Math.,126 (1987), 335–388.CrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Pressley andG. B. Segal,Loop Groups, Oxford University Press (1988).Google Scholar
  10. [10]
    G. B. Segal,The definition of conformal field theory (to appear).Google Scholar
  11. [11]
    E. Witten, Super-symmetry and Morse theory,J. Diff. Geom.,17 (4) (1982), 661–692.MATHMathSciNetGoogle Scholar
  12. [12]
    E. Witten, Quantum field theory and the Jones polynomial,Comm. Math. Phys. (to appear).Google Scholar
  13. [13]
    E. Witten, Topological quantum field theory,Comm. Math. Phys.,117 (1988), 353–386.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    E. Witten, Topological sigma models,Comm. Math. Phys.,118 (1988), 411–449.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    E. Witten, 2 + 1 dimensional gravity as an exactly soluble system,Nucl. Phys. B,311 (1988/89), 46–78.CrossRefMathSciNetGoogle Scholar
  16. [16]
    E. Witten, Topology changing amplitudes in 2 + 1 dimensional gravity,Nucl. Phys. B (to appear).Google Scholar
  17. [17]
    E. Witten, Elliptic genera and quantum field theory,Comm. Math. Phys.,109 (1987), 525–536.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Publications Mathématiques de L’I.É.E.S. 1988

Authors and Affiliations

  • Michael Atiyah
    • 1
  1. 1.The Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations