Advertisement

Relating laboratory and outdoor exposure of coatings: II

Effects of relative humidity on photodegradation and the apparent quantum yield of acrylic-melamine coatings
  • Tinh Nguyen
  • Jonathan Martin
  • Eric Byrd
  • Ned Embree
Technical Articles

Abstract

The effect of relative humidity (RH) from ≪1% to 90% on the photodegradation and quantum efficiency for a partially-methylated melamine acrylic coating exposed to UV/50°C condition has been investigated. The UV source is supplied by two 1000 W Xenon arc solar simulators and the relative humidities are provided by specially designed humidity generators, which control relative humidity in the 0 to 90% range to within <3% of the measured values. Radiation absorbed in the coating and degradation of the films are measured by UV-visible and Fourier transform infrared spectroscopies, respectively. The degradation at a particular RH/UV condition consists of four different modes: reactions taken place during post curing, hydrolysis due to water in the film at a particular RH, photodegradation, and moisture-enhanced photodegradation. Total degradation, hydrolysis, and moisture-enhanced photodegradation increase with increasing RH. At low relative humidities, photodegradation is an important degradation mode but hydrolysis dominates the degradation at high RH levels. Moisture in the film is found to increase the quantum efficiency of acrylic melamine coating photodegradation.

Keywords

Melamine Coating Technology Outdoor Exposure Relative Humidity Level Apparent Quantum Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. (1).
    Burroughs, W.J.,Weather Cycles: Real or Imaginary, Cambridge University Press, New York, 1992.Google Scholar
  2. (2).
    Martin, J.W., Saunders, S.C., Floyd, F.L., and Wineburg, J.P., “Methodologies for Predicting the Service Life of Coatings,”Federation Series on Coatings Technology, Federation of Societies for Coatings Technology, Blue Bell, PA, 1996.Google Scholar
  3. (3).
    Norins, A.L., inThe Biological Effects of Ultraviolet Radiation, Urbach, F. (Ed.), Pergamon Press, New York, p. 605, 1969.Google Scholar
  4. (4).
    Scotto, J. and Fears, T.R.,Cancer Invest., 5, 275 (1987).PubMedCrossRefGoogle Scholar
  5. (5).
    Caldwell, M.M.,Photophysiol., 6, 131 (1971).Google Scholar
  6. (6).
    Hirt, R.C., Schmitt, R.G., Searle, N.D., and Sullivan, A.P.,J. Opt., Soc. Am., 50, 706 (1960).CrossRefADSGoogle Scholar
  7. (7).
    Zerlaut, G.Z. and Ellinger, M.L.,J. Oil & Colour Chemists’ Assoc., 64, 387 (1981).Google Scholar
  8. (8).
    Zerlaut, G.A., inAccelerated and Outdoor Durability Testing of Organic Materials, Ketola, W.D. and Grossman, D. (Eds.), ASTM STP 1202, American Society for Testing and Materials, Philadelphia, PA, p. 1, 1993.Google Scholar
  9. (9).
    Randy, B. and Rabeck, J.F.,Photodegradation, Photooxidation and Photostabilization of Polymers: Principles and Applications, John Wiley and Sons, New York, p. 6, 1975.Google Scholar
  10. (10).
    Rabek, J.F.,Polymer Photodegradation-Mechanisms and Experimental Methods, Chapman and Hall, New York, pp 1–66, 1995.Google Scholar
  11. (11).
    Guillet, J.E., Li, S.K.L., and Ng, H.C.,Am. Chem. Soc. Symp. Series 266, American Chemical Society, Washington, D.C., p. 165, 1984.Google Scholar
  12. (12).
    Dan, E. and Guillet, J.E.,Macromolecules, 6, 230 (1973).CrossRefADSGoogle Scholar
  13. (13).
    Gupta, A., Rembaum, A., and Moacanin, J.,Macromolecules, 11, 1285 (1978).CrossRefADSGoogle Scholar
  14. (14).
    Martin, J.W., Nguyen, T., Byrd, E., Embree, N., and Dickens, B.,Polym. Deg. Stab., 75, 193 (2002).CrossRefGoogle Scholar
  15. (15).
    Bauer, D.R., Gerlock, J.L., and Mielewski, D.F.,Polym. Deg. and Stab., 36, 9 (1992).CrossRefGoogle Scholar
  16. (16).
    Bauer, D.R., “Chemical Criteria for Durable Automotive Topcoat,”Journal of Coatings Technology,66, No. 835, 57 (1994).Google Scholar
  17. (17).
    Lemaire, J. and Siampiringue, N., inService Life Prediction of Organic Coatings, A Systematic Approach, Bauer, D. and Martin, J.W. (Eds.), ACS Symposium Series 722, American Chemical Society, Washington, D.C., p. 246, 1999.CrossRefGoogle Scholar
  18. (18).
    Carduner, K.R., Carter, R.O. III, Zinbo, M., Gerlock, J.L., and Bauer, D.R.,Macromolecules, 21, 1598 (1988).CrossRefADSGoogle Scholar
  19. (19).
    Gerlock, J.L., Mielewski, D.F., Bauer, D.R., and Carduner, K.R.,Macromolecules, 21, 1604 (1988).CrossRefADSGoogle Scholar
  20. (20).
    Lamers, P.L., Johnston, B.K., and Tyler, W.H.,Polym. Deg. Stab., 55, 309 (1997).CrossRefGoogle Scholar
  21. (21).
    Bauer, D.R. and Briggs, L.M., inCharacterization of Highly Crosslinked Polymers, Labana, S.S. and Dickie, R.A. (Eds.), ACS Symposium Series 243, American Chemical Society, Washington, D.C., p. 271, 1983.CrossRefGoogle Scholar
  22. (22).
    Bauer, D.R. and Mielewski, D.F.,Polym. Deg. Stab., 40, 349 (1993).CrossRefGoogle Scholar
  23. (23).
    Weast, R. (Ed.),Handbook of Chemistry and Physics, 53rd ed., CRC Press, p. #D148, 1972.Google Scholar
  24. (24).
    Gerlock, J.L., Van Oene, H., and Bauer, D.R.,Euro. Polym. J., 19, 11 (1983).CrossRefGoogle Scholar
  25. (25).
    Gerlock, J.L., Dean, M.J., Korniski, T.J., and Bauer, D.R.,Ind. Eng. Chem. Prod. Res. Dev., 25, 449 (1986).CrossRefGoogle Scholar
  26. (26).
    English, A.D. and Spinelli, H.J., inCharacterization of Highly Crosslinked Polymers, Labana, S.S. and Dickie, R.A. (Eds.), ACS Symposium Series 243, American Chemical Society, Washington, D.C., p. 257, 1984.CrossRefGoogle Scholar
  27. (27).
    English, A.D. and Spinelli, H.J., “Degradation Chemistry of Primary Crosslinks in High Solids Enamel Finishes: Solar Assisted Hydrolysis,”Journal of Coatings Technology,56, No. 711, 43 (1984).Google Scholar
  28. (28).
    Nguyen, T., Martin, J.W., Byrd, E., and Embree, N.,Polym. Deg. Stab., 77, 1 (2002).CrossRefGoogle Scholar
  29. (29).
    Bauer, D.R.,J. Appl. Polym. Sci., 27, 3651 (1982).CrossRefGoogle Scholar
  30. (30).
    Rodgers, W.R., Garner, D.P., and Cheever, G.D., “Study of the Attack of Acidic Solutions on Melamine-Acrylic Basecoat/Clearcoat Paint Systems,”Journal of Coatings Technology,70, No. 877, 83 (1998).CrossRefGoogle Scholar
  31. (31).
    Mori, K., Tachi, K., Muramatsu, M., and Torita, K., inProc. XXIV Fatipec Congress, A, p. 101, 1998.Google Scholar
  32. (32).
    Schulz, U., Trubiroha, P., Schernau, U., and Baumgart, H.,Prog. Org. Coat., 40, 151 (2000).CrossRefGoogle Scholar
  33. (33).
    Wernstäh, K.L.,Polym. Deg. Stab., 54, 57 (1996).CrossRefGoogle Scholar
  34. (34).
    Holubka, J.W., Schmitz, P.J., and Xu, Li-F., “Acid Etch Resistance of Automotive Clearcoats. I: Laboratory Test Method Development,”Journal of Coatings Technology,72, No. 901, 77 (2000).CrossRefGoogle Scholar
  35. (35).
    Prane, J.A., “Introduction to Polymers and Resins,”Federation Series on Coatings Technology, Federation of Societies for Coatings Technology, Philadelphia, PA, 1986.Google Scholar
  36. (36).
    Rancourt, J.D.,Optical Thin Films, User’s Handbook, McGraw-Hill, New York, p. 183, 1987.Google Scholar
  37. (37).
    Bauer, D.R.,Prog. Org. Coat., 23, 105 (1993).CrossRefGoogle Scholar
  38. (38).
    Johnson, B.W. and McIntire, R.,Prog. Org. Coat., 27, 95 (1996).CrossRefGoogle Scholar
  39. (39).
    Decker, C. and Bendaikha, T., inInt. Conf. Adv. Stab. and Controlled Deg. Polymers, Patsis, A. (Ed.), Technomic, Lancaster, PA, p. 143, 1989.Google Scholar
  40. (40).
    Decker, C., Moussa, K., and Bendaikha, T.,J. Polym. Sci., Polym. Chem., 29, 739 (1991).CrossRefGoogle Scholar
  41. (41).
    Costa, G.W., Hirt, R.C., and Smalley, D.L.,J. Chem. Phys., 18, 434 (1950).CrossRefADSGoogle Scholar
  42. (42).
    Fox, R.B., Isaacs, L.G., Stokes, S., and Kagarise, J.,J. Polym. Sci., A1, 2085 (1964).Google Scholar
  43. (43).
    Bauer, D.R.,Prog. Org. Coat., 14, 193 (1986).CrossRefGoogle Scholar
  44. (44).
    Chang, T.T.,Prog. Org. Coat., 29, 45 (1996).CrossRefGoogle Scholar
  45. (45).
    Blank, W.J., “Reaction Mechanism of Melamine Resins,”Journal of Coatings Technology,51, No. 656, 61, (1979).Google Scholar
  46. (46).
    Santer, J.O.,Prog. Org. Coat., 12, 309 (1984).CrossRefGoogle Scholar
  47. (47).
    Bauer, D. and Dickie, R.,J. Appl. Polym. Sci., 18, 2014 (1980).Google Scholar
  48. (48).
    Larkin, P.J., Makowski, M.P., Colthup, N.B., and Flood, L.A.,Vibrational Spectros., 17, 53 (1998).CrossRefGoogle Scholar
  49. (49).
    Colthup, N.B., Daly, L.H., and Wiberley, S.E.,Introduction to Infrared and Raman Spectroscopy, 3rd ed., Academic Press, New York, p. 439, 1990.Google Scholar
  50. (50).
    Samaraweera, U. and Jones, F.N., “Possible Reaction Pathways for Self-Condensation of Melamine Resins; Reversibility of Methylene Bridge Formation,”Journal of Coatings Technology,64, No. 804, 69 (1992).Google Scholar
  51. (51).
    Adamson, A.W.,Physical Chemistry of Surfaces, 2nd ed., Interscience, New York, p. 585, 1967.Google Scholar
  52. (52).
    Berge, A., Kvaeven, B., and Ugelstad, J.,European Polym. J., 6, 981 (1970).CrossRefGoogle Scholar
  53. (53).
    Berge, A. Gudmundsen, S., and Ulgelstad, J.,European Polym. J., 5, 171 (1969).CrossRefGoogle Scholar
  54. (54).
    Nguyen, T., Martin, J.W., Saunders, S., and Byrd, E., “Modes, Mechanism and Model for Hydrolysis of Acrylic-Melamine Coatings in the Absence of UV Light,”Proc. 7th Annual Meeting of the Federation of Societies for Coatings Technology, Atlanta, GA, November, pp. 759–796, 2001.Google Scholar
  55. (55).
    Bascom, W.D.,J. Adhesion, 2, 168 (1970).CrossRefGoogle Scholar
  56. (56).
    Mayne, J.E.O. and Mills, D.J.,J. Oil & Colour Chemists’ Assoc., 58, 155 (1975).Google Scholar
  57. (57).
    Nguyen, T., Hubbard, J.B., and Pommersheim, J.M., “Unified Model for the Degradation of Organic Coatings on Steel in a Neutral Electrolyte,”Journal of Coatings Technology,68, No. 855, 45 (1996).Google Scholar
  58. (58).
    Corti, H., Fernandez-Prizi, R., and Gomez, D.,Prog. Org. Coat., 10, 5 (1982).CrossRefGoogle Scholar
  59. (59).
    Mills, D.J. and Mayne, J.E.O., inCorrosion Control by Organic Coatings, Leidheiser, H. Jr., (Ed.), Nat. Assoc. Corr. Eng., Houston, TX, p. 12, 1981.Google Scholar
  60. (60).
    Cuthrell, R.E.,J. Appl. Polym. Sci., 12, 1263 (1968).CrossRefGoogle Scholar
  61. (61).
    Karyakina, M.I. and Kuzmak, A.E.,Prog. Org. Coat., 18, 325 (1990).CrossRefGoogle Scholar
  62. (62).
    VanLandingham, M.R., Eduljee, R.F., and Gillespie, J.W. Jr.,J. Appl. Polym. Sci., 71, 669 (1999).Google Scholar
  63. (63).
    VanLandingham, M., Nguyen, T., Byrd, E., and Martin, J.W., “On the Use of the Atomic Force Microscope to Monitor Physical Degradation of Polymeric Coatings Surfaces,”Journal of Coatings Technology,73, No. 923, 43 (2001).CrossRefGoogle Scholar
  64. (64).
    Leadley, S.R., Shakesheff, K.M., et al.,Biomaterials, 19, 1353 (1998).PubMedCrossRefGoogle Scholar
  65. (65).
    Gopferich, A. and Langer, R.,J. Polym. Sci., Part A, Polym. Chem., 31, 2445 (1993).CrossRefGoogle Scholar
  66. (66).
    Gu, X., Raghavan, D., Nguyen, T., and VanLandingham, M.,Polym. Deg. Stab., 74, 139 (2001).CrossRefGoogle Scholar
  67. (67).
    Streitwieser, D. Jr. and Heatcock, C.H.,Introduction to Organic Chemistry, 2nd ed., Macmillan Publishing, New York, p. 256, 1981.Google Scholar
  68. (68).
    Grassie, N. and MacCallum, J.R.,J. Polym. Sci., Part A, 2, 983 (1964).Google Scholar
  69. (69).
    Fox, R.B., Isaccs, L.G., and Stokes, S.,J. Polym. Sci., Part A, 1, 1079 (1963).Google Scholar
  70. (70).
    Gupta, A., Liang, R., Tsay, F.D., and Moacanin, J.,Macromolecules, 13, 1696 (1980).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media 2002

Authors and Affiliations

  • Tinh Nguyen
    • 1
  • Jonathan Martin
    • 1
  • Eric Byrd
    • 1
  • Ned Embree
    • 1
  1. 1.National Institute of Standards and TechnologyUSA

Personalised recommendations