Acta Mathematica Hungarica

, Volume 74, Issue 1–2, pp 125–134 | Cite as

Some generalizations of the Eneström-Kakeya theorem

  • R. B. Gardner
  • N. K. Govil


Imaginary Part Unit Disk Outer Radius Approximation Theory Positive Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Anderson, E. B. Saff, and R. S. Varga, On the Eneström-Kakeya theorem and its sharpness,Linear Algebra and Its Applications,28 (1979), 5–16.zbMATHCrossRefGoogle Scholar
  2. [2]
    N. Anderson, E. B. Saff and R. S. Varga, An extension of the Eneström-Kakeya theorem and its sharpness,SIAM J. Math. Anal.,12 (1981), 10–22.zbMATHCrossRefGoogle Scholar
  3. [3]
    G. Eneström, Härledning af en allmän formel för antalet pensionärer…, Öfv. af. Kungl. Vetenskaps-Akademiens Förhandlingen, No. 6 (Stockholm, 1893).Google Scholar
  4. [4]
    K. K. Dewan and N. K. Govil, On the Eneström-Kakeya theorem,J. Approx. Theory,42 (1984), 239–244.zbMATHCrossRefGoogle Scholar
  5. [5]
    R. Gardner and N. K. Govil, On the location of the zeros of a polynomial,Journal of Approximation Theory,76 (1994), 286–292.CrossRefGoogle Scholar
  6. [6]
    A. Joyal, G. Labelle, and Q. I. Rahman, On the location of zeros of polynomials,Canadian Math. Bull.,10 (1967), 55–63.Google Scholar
  7. [7]
    S. Kakeya, On the limits of the roots of an algebraic equation with positive coefficients,Tôhoku Math. J.,2 (1912–13), 140–142.Google Scholar
  8. [8]
    M. Kovačević and I. Milovanović, On a generalization of the Eneström-Kakeya Theorem,Pure Math. and Applic., Ser. A,3 (1992), 43–47.Google Scholar
  9. [9]
    M. Marden,Geometry of Polynomials, Amer. Math. Soc. Math. Surveys 3 (1966).Google Scholar
  10. [10]
    E. Titchmarsh,The Theory of Functions, Oxford University Press (Oxford, 1932).Google Scholar

Copyright information

© Akadémiai Kiadó 1997

Authors and Affiliations

  • R. B. Gardner
    • 1
  • N. K. Govil
    • 2
  1. 1.Department of MathematicsEast Tennessee State UniversityJohnson CityU.S.A.
  2. 2.Department of MathematicsAuburn UniversityAuburnU.S.A.

Personalised recommendations