Korean Journal of Chemical Engineering

, Volume 20, Issue 5, pp 844–849 | Cite as

On the reduction potential of cation-exchanged heteropolyacids (HPAs)

  • In Kyu Song
  • Han Soo Kim
  • Myung-Suk Chun


UV-Visible spectroscopy and scanning tunneling microscopy (STM) studies were performed to explore reduction potentials of cation-exchanged Keggin-type heteropolyacid (HPA) catalysts. Absorption band edge and negative differential resistance (NDR) peak voltage of cation-exchanged HPA samples determined by UV-Visible spectroscopy and STM, respectively, were colsely related to their reduction potentials. It was observed that HPAs with higher reduction potentials showed absorption band edges at longer wave lengths and exhibited NDR peak voltages at less negative applied values. The reduction potentials of cation-exchanged HPA catalysts could also be correlated with the electronegativities of counter-cations. Substitution of more electronegative counter-cations increased reduction potentials of the HPAs. The NDR peak voltage and the absorption band edge of HPAs could be utilized as a correlating parameter for their reduction potentials.

Key words

Heteropolyacid (HPA) Reduction Potential NDR Absorption Edge 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ai, M., “Effects of Cations Introduced into 12-Molybdophosphoric Acid on the Catalyst Properties”,Appl. Catal.,4, 245 (1982).CrossRefGoogle Scholar
  2. Alimarin, I. P., Dorokhova, E. N., Kazanskii, L. P. and Prokhorova, G. V., “Electrochemical Methods in the Analytical Chemistry of Heteropoly Compounds”,Zh. Anal. Khim.,35, 2000 (1980).Google Scholar
  3. Altenau, J. J., Pope, M. T., Prados, R. A. and So, H., “Models for Heteropoly Blues. Degree of Valence Trapping in Vanadium(IV)and Molybdenum(V)-substituted Keggin Anions”,Inorg. Chem.,14, 417 (1975).CrossRefGoogle Scholar
  4. Barteau, M. A., Lyons, J. E. and Song, I. K., “Surface Chemistry and Catalysis on Well-defined Oxide Surfaces: Nanoscale Design Bases for Single-site Heterogeneous Catalysts”,J. Catal.,216, 236 (2003).CrossRefGoogle Scholar
  5. Brown, G. M., Noe-Spirlet, M. R., Busing, W. R. and Levy, H. A., “Dodecatungstophosphoric Acid Hexahydrate,(H5O2 +)3(PW12O40 3 The True Structure of Keggin's Pentahydrate from Single-crystal Xray and Neutron Diffraction Data”,Acta. Cryst. B,33, 1038 (1977).CrossRefGoogle Scholar
  6. Choi, J. S., Song, I. K. and Lee, W. Y., “A Composite Catalytic Membrane Reactor Using Heteropolyacid-blended Polymer Membrane”,Korean J. Chem. Eng.,17, 280 (2000).Google Scholar
  7. Eguchi, K., Seiyama, T., Yamazoe, N, Katsuki, S. and Taketa, H., “Electronic Structures of XMo12O40 Heteropolyanions (X=P, As, Si, and Ge) and Their Reduction Behavior”,J. Catal,111, 336 (1988).CrossRefGoogle Scholar
  8. Hill, C. L. and Prosser-McCartha, C. M., “Homogeneous Catalysis by Transition Metal Oxygen Anion Clusters”,Coord. Chem. Rev.,143, 407 (1995).CrossRefGoogle Scholar
  9. Kaba, M. S., Song, I. K. and Barteau, M. A., “Investigation of Framework and Cation Substitutions in Keggin-type Heteropoly Acids Probed by Scanning Tunneling Microscopy and Tunneling Spectroscopy”,J. Vac. Sci. Technol. A,15, 1299 (1997).CrossRefGoogle Scholar
  10. Kaba, M. S., Song, I. K. and Barteau, M. A., “Ordered Array Formation and Negative Differential Resistance Behavior of Cation-exchanged Heteropoly Acids Probed by Scanning Tunneling Microscopy”,J. Phys. Chem.,100, 19577 (1996).CrossRefGoogle Scholar
  11. Keggin, J. F., “Structure of the Molecule of 12-Phosphotungstic Acid”,Nature,131, 908 (1933).Google Scholar
  12. Keita, B. and Nadjo, L., “New Oxometalate-based Materials for Catalysis and Electrocatalysis”,Mater. Chem. Phys.,22, 77 (1989).CrossRefGoogle Scholar
  13. Kim, H. C., Moon, S. H. and Lee, W. Y., “Nature of the Effect of Counter Cations on the Redox Property of 12-Molybdophosphates”,Chem. Lett., 447 (1991).Google Scholar
  14. Kinne, M. and Barteau, M. A., “STM and TS Investigations of Silver Polyoxometalate Monolayers: Model Compounds and Potential Multifunctional Oxidation Catalysts”,Surf. Sci.,447, 105 (2000).CrossRefGoogle Scholar
  15. Kozhevnikov, I. V., “Heteropoly Acids and Related Compounds as Catalysts for Fine Chemical Synthesis”,Catal. Rev.-Sci. Eng.,37, 311 (1995).CrossRefGoogle Scholar
  16. Lee, W. Y. and Song, I. K., “Design of Heteropolyacid-imbedded Polymer Films and Catalytic Membranes”,HWAHAK KONGHAK,38, 317 (2000).Google Scholar
  17. Lee, W. Y., Song, I. K., Lee, J. K., Park, G. I. and Lim, S.S., “Design of Heteropoly Compound-imbedded Polymer Film Catalysts and Their Application”,Korean J. Chem. Eng.,14, 432 (1997).Google Scholar
  18. Melsheimer, J., Mahmoud, S. S., Mestl, G. and Schlögl, R., “In Situ UV-Vis Diffuse Reflectance Spectroscopy of Reduction-reoxidation of Heteropoly Compounds by Methanol and Ethanol: A Correlation between Spectroscopic and Catalytic Data”,Catal. Lett.,60, 103 (1999).CrossRefGoogle Scholar
  19. Misono, M., “Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and Tungsten”,Catal. Rev.-Sci. Eng.,29, 269 (1987).CrossRefGoogle Scholar
  20. Mizuno, N., Iwamoto, M. and Tateishi, M., “Pronounced Catalytic Activity of Fe0.08Cs2.5H1.26VMo11O40 for Direct Oxidation of Propane into Acrylic Acid”,Appl. Catal. A,128, 1165 (1995).Google Scholar
  21. Mizuno, N., Suh, D.-J., Han, W. and Kudo, T., “Catalytic Performance of Cs2.5Fe0.08H1.26VMo11O40 for Direct Oxidation of Lower Alkanes”,J. Mol. Catal. A,128, 309 (1995).Google Scholar
  22. Mizuno, N., Tateishi, M. and Iwamoto, M., “Direct Oxidation of Isobutane into Methacrylic Acid and Methacrolein over Cs2.5Ni0.08-substitutedH3PMo12O40”,J. Chem. Soc. Chem. Comm., 14, 1411 (1994).CrossRefGoogle Scholar
  23. Okuhara, T., Mizuno, N. and Misono, M., “Catalytic Chemistry of Heteropoly Compounds”,Adv. Catal.,41, 113 (1996).Google Scholar
  24. Park, G. I., Lee, W. Y. and Song, I. K., “MTBE Synthesis by Keggintype and Dawson-type Heteropolyacids”,HWAHAK KONGHAK,38, 155 (2000).Google Scholar
  25. Pope, M. T. and Mhüller, A. (Eds.), “Polyoxometalates: From Platonic Solids to Anti-retroviral Activity”, Kluwer Academic Publishers, Dordrecht, The Netherlands (1994).Google Scholar
  26. Pope, M. T. and Varga, G. M., “Heteropoly Blues: I. Reduction Stoichiometries and Reduction Potentials of Some 12-Tungstates”,Inorg. Chem.,5, 1249 (1966).CrossRefGoogle Scholar
  27. Song, I. K., Kaba, M. S., Barteau, M. A. and Lee, W. Y, “Investigation of Redox Potential and Negative Differential Resistance Behavior of Heteropolyacids by Scanning Tunneling Microscopy,”Catal. Today,44, 285 (1998).CrossRefGoogle Scholar
  28. Song, I. K., Kaba, M. S., Barteau, M. A. and Lee, W. Y, “Scanning Tunneling Microscopy of Self-assembled Heteropoly Acid Monolayers Deposited on Graphite Surface: NDR Behavior and Redox Activity”,HWAHAK KONGHAK,35, 407 (1997).Google Scholar
  29. Song, I. K. and Barteau, M. A., “Scanning Tunneling Microscopy and Tunneling Spectroscopy of Heteropolyacid Self-assembled Monolayers: Connecting Nano Properties to Bulk Properties”,Korean J. Chem. Eng.,19, 567 (2002).Google Scholar
  30. Song, I. K., Lyons, J. E. and Barteau, M. A, “Correlation of Alkane Oxidation Performance with STM and Tunneling Spectroscopy Measurements of Heteropolyacid Catalysts”,Catal. Today (2003): in press.Google Scholar
  31. Song, I. K., Moon, S. H. and Lee, W. Y, “Catalytic Properties of Thermally Decomposed 12-Molybdophosphoric and 10-Molybdo-2-vanadophosphoric Acids”,Korean J. Chem. Eng.,8, 33 (1991).CrossRefGoogle Scholar
  32. Song, I. K., Shnitser, R. B., Cowan, J. I, Hill, C. L. and Barteau, M. A., “Nanoscale Characterization of Redox and Acid Properties of Keggin-type Heteropolyacids by Scanning Tunneling Microscopy and Tunneling Spectroscopy: Effect of Heteroatom Substitution”,Inorg. Chem.,41, 1292 (2002).CrossRefGoogle Scholar
  33. Stobbe-Kreemers, A. W., “The Development of Heterogeneous Wacker Oxidation Catalysis: The Role of the Support and the Redox Component”, Ph.D Thesis, Delft Univ. (1993).Google Scholar
  34. Strandberg, R., “Multicomponent Polyanions. 13. The Crystal Structure of a Hydrated Dodecamolybdophosphoric Acid, H3Mo12PO40 (H2O)29-31”,Acta Chem. Scand. A,29, 359 (1975).CrossRefGoogle Scholar
  35. Tanaka, K. and Ozami, A., “Acid-Base Properties and Catalytic Activity of Solid Surfaces”,J. Catal.,8, 1 (1967).CrossRefGoogle Scholar
  36. Weber, R S., “Molecular Orbital Study of C-H Bond Breaking during the Oxidative Dehydrogenation of Methanol Catalyzed by Metal Oxide Surfaces”,J. Phys. Chem.,98, 2999 (1994).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineering 2003

Authors and Affiliations

  1. 1.Department of Environmental & Applied Chemical EngineeringKangnung National UniversityKangwondoKorea
  2. 2.Complex Fluids Research TeamKorea Institute of Science and TechnologySeoulKorea

Personalised recommendations