Mixed-species primate groups in the kibale forest: Ecological constraints on association

  • Colin A. Chapman
  • Lauren J. Chapman


Five species of diurnal primates in the Kibale Forest of western Uganda— red colobus (Colobus badius),black- and- white colobus (Colobus guereza),redtail monkeys (Cercopithecus ascanius),blue monkeys (Cercopithecus mitis),mangabeys (Cercocebus albigena)-often associate in mixed- species groups that vary in size and composition from day to day. Across this range of species, we found no consistent effect of association on feeding rate. In addition, there is no systematic difference between the species- specific individual feeding rates when animals were in mixed- species groups feeding in a specific tree on one day and when individuals of one of the same species were feeding in the same individual tree on a subsequent day. If associating in a mixed- species group lowers the risk of predation, one might expect that the number of vigilant events would decrease in mixed- species groups. However, the only species to exhibit a consistent decrease in vigilant behavior when in association was the red colobus. Redtail monkeys were more vigilant when in association. We predicted that the density and distribution of food resources would both constrain the frequency of association and the size of mixed- species groups. Based on 22 months of data on food resources and bimonthly censuses, we found no relationship between the frequency of association (except mangabeys) or mean mixed- species group size and the density and distribution of food resources for all species. Finally, we examined the behavior of the monkeys in and out of association before and after the playback of a crowned hawk eagle call (Spizaetus coronatus),a known predator. When more species were in association, the amount of time they spent being vigilant following the playback was greater and the response more intense than when fewer species were in association or when the group was alone. The results of this study illustrate that the nature of the costs and benefits of polyspecific associations for these different monkey species are complex and vary from species to species.

Key words

polyspecific associations mixed-species groups group size foraging ecology group living 


  1. Alexander, R. D. (1974). The evolution of social behaviour.Annu. Rev. EcoL Sociobiol. 5: 325–384.CrossRefGoogle Scholar
  2. Altmann, S. (1974). Baboons, space, time, and energy.Am. Zool. 14: 221–248.Google Scholar
  3. Beauchamp, J. J., and Olson, J. S. (1973). Corrections for bias in regression estimates after logarithmic transformations.Ecology 54: 1403–1407.CrossRefGoogle Scholar
  4. Boinski, S. (1989). Why don'tSaimiri oerstedii andCebus capucinus form mixed-species groups?Int J. Primatol. 10: 103–114.Google Scholar
  5. Bradbury, J. W., and Vebrencamp, S. L. (1977). Social organization and foraging in emballonurid bats. II. A model for the determination of group size.Behav. EcoL Sociobiol 1: 383–404.CrossRefGoogle Scholar
  6. Brown, L., Urban, E. K., and Newman, K. (1982).The Birds of Africa, Academic Press, New York.Google Scholar
  7. Butynski, T. M. (1990). Comparative ecology of blue monkeys(Cercopithecus mitis) in high- and low-density subpopulations.EcoL Monogr. 60: 1–26.CrossRefGoogle Scholar
  8. Chapman, C. A. (1987). Flexibility in diets of three species of Costa Rican primates.Folia Primatol. 29: 90–105.Google Scholar
  9. Chapman, C. A. (1990a). Association patterns of spider monkeys: The influence of ecology and sex on social organization.Behav. Ecol. Sociobiol. 26: 409–414.CrossRefGoogle Scholar
  10. Chapman, C. A. (1990b). Ecological constraints on group size in three species of neotropical primates.Folia Primatol. 55: 1–9.PubMedGoogle Scholar
  11. Chapman, C. A., and Lefebvre, L. (1990). Manipulating foraging group size: Spider monkeys food calls at fruiting trees.Anim. Behav. 39: 891–896.CrossRefGoogle Scholar
  12. Chapman, C. A., Chapman, L. J., Wrangham, R. W., Hunt, K. Gebo, D., and Gardner, L. (1992). Estimators of fruit abundance of tropical trees.Biotropica 24: 527–531.CrossRefGoogle Scholar
  13. Chapman, C. A., White, F. J., and Wrangham, R. W. (1993). Defining subgroup size in fission-fusion societies.Folia Primatol. 61: 31–34.PubMedGoogle Scholar
  14. Chapman, C. A., Wrangham, R. W., and Chapman, L. J. (1995). Ecological constraints on group size: An analysis of spider monkey and chimpanzee subgroups.Behav. Ecol. Sociobiol. 36: 59–70.CrossRefGoogle Scholar
  15. Cody, M. L. (1971). Finch flocks in the Mojave desert.Theor. Pop. Biol. 2: 141–158.CrossRefGoogle Scholar
  16. Cords, M. (1986). Interspecific and intraspecific variation in diet of two forest guenons,Cercopithecus ascanius andC. mitis. J. Anim Ecol. 55: 811–827.CrossRefGoogle Scholar
  17. Cords, M. (1987). Mixed-species association ofCercopithecus monkeys in the Kakamega Forest, Kenya.Univ. Calif. Publ. 117.Google Scholar
  18. Cords, M. (1990). Vigilance and mixed-species associations of some east African forest monkeys.Behav. EcoL Sociobiol. 26: 297–300.CrossRefGoogle Scholar
  19. Garber, P. A. (1988). Diet, foraging patterns, and resource defense in a mixed species troop ofSaguinus mystax andSaguinus fuscicollis in Amazonian Peru.Behaviour 105: 18–34.Google Scholar
  20. Gartlan, J. S., and Struhsaker, T. T. (1972). Polyspecific associations and niche separation of rain-forest anthropoids in Cameroon, West Africa.J. Zool. 168: 221–226.CrossRefGoogle Scholar
  21. Gautier-Hion, A. (1988). Polyspecific associations among forest guenons: Ecological, behavioral and evolutionary aspects. In Gautier-Hion, A., Bouliere, F., Gautier, J.-P., and Kingdon, J. (eds.),A Primate Radiation, Cambridge University Press, Cambridge, pp. 454–476.Google Scholar
  22. Gautier-Hion, A., and Tutin, C. E. G. (1988). Simultaneous attack by adult males of a polyspecific troop of monkeys against a crowned hawk eagle.Folia Primatol. 51: 149–151.PubMedGoogle Scholar
  23. Gautier-Hion, A., Quris, R., and Gautier, J.-P. (1983). Monospecific vs polyspecific life: A comparative study of foraging and antipredatory tactics in a community ofCercopithecus monkeys.Behav. Ecol. Sociobiol. 12: 325–335.CrossRefGoogle Scholar
  24. Gebo, D. L., and Chapman, C. A.(1995). Positional behavior in five sympatric old world monkeys.Am. J. Phys. Anthropol. 97: 49–76.PubMedCrossRefGoogle Scholar
  25. Giraldeau, L. (1988). The stable group and the determinants of foraging group size. In Slobodchikoff, C. N. (ed.),The Ecology of Social Behavior, Academic Press, New York, pp. 33–53.Google Scholar
  26. Goodall, J. (1986).The Chimpanzees of Gombe, Harvard University Press, Cambridge, MA.Google Scholar
  27. Hamilton, W. D. (1971). Geometry of the selfish herd.J. Theor. Biol. 31: 295–311.PubMedCrossRefGoogle Scholar
  28. Holmes, R. T., and Pitelka, F. A. (1968). Food overlap among coexisting sandpipers on northern Alaskan tundra.Syst. Zool. 17: 305–318.CrossRefGoogle Scholar
  29. Isbell, L. A. (1984). Daily ranging behavior of red colobus(Colobus badius) in Kibale Forest, Uganda.Folia Primatol. 41: 34–48.Google Scholar
  30. Isbell, L. A. (1991). Contest and scramble competition: Patterns of female aggression and ranging behavior among primates.Behav. Ecol. 2: 143–155.CrossRefGoogle Scholar
  31. Klein, L. L., and Klein, D. J. (1973). Observations on two types of neotropical primate intertaxa associations.Am. J. Phys. Anthropol. 38: 649–654.PubMedCrossRefGoogle Scholar
  32. Klein, L. L., and Klein, D. J. (1977). Feeding behavior of the Columbian spider monkey.Ateles belzebuth. In Clutton-Brock, T. T. (ed.),Primate Ecology, Academic Press, London, pp. 153–181.Google Scholar
  33. Leighton, M., and Leighton, D. R. (1982). The relationship between size of feeding aggregate to size of food patch: Howler monkeys(Alouatta palliata) feeding inTrichilia cipo fruiting trees on Barro Colorado Island.Biotropica 14: 81–90.CrossRefGoogle Scholar
  34. Millar, D. M. (1984). Reducing transformation bias in curve fitting.Am. Stat. 38: 124–126.CrossRefGoogle Scholar
  35. Milton, K. (1984). Habitat, diet, and activity patterns of free-ranging woolly spider monkeys(Brachyteles arachnoides E. Geoffroyi 1906).Int. J. Primatol. 5: 491–514.CrossRefGoogle Scholar
  36. Milton, K., and May, M. L. (1976). Body weight, diet and home range area in primates.Nature 259: 459–462.PubMedCrossRefGoogle Scholar
  37. Morse, D. H. (1977). Feeding behaviour and predator avoidance in heterospecific groups.Bioscience 27: 332–339.CrossRefGoogle Scholar
  38. Munn, C. A., and Terborgh, J. (1979). Multispecies territoriality in neotropical foraging flocks.Condor 81: 338–347.CrossRefGoogle Scholar
  39. Nishida, T. (1968). The social group of wild chimpanzees in the Mahale Mountains.Primates 9: 167–224.CrossRefGoogle Scholar
  40. Norconk, M.A. (1986).Interactions Between Primate Species in a Neotropical Forest: Mixed-Species Troops of Saguinus mystaxand S. fuscicollis(Callithrichidae), Ph.D. dissertation, University of California, Los Angeles.Google Scholar
  41. Norconk, M. A. (1990a). Introductory remarks: Ecological and behavioral correlates of polyspecific primate troops.Am. J. Primatol. 21: 81–85.CrossRefGoogle Scholar
  42. Norconk, M.A. (1990b). Mechanisms promoting stability in mixedSaguinus mystax andS. fuscicollis troops.Am. J. Primatol. 21: 159–170.CrossRefGoogle Scholar
  43. Oates, J. F. (1977). The guereza and its food. In Clutton-Brock, T. T. (ed.),Primate Ecology Academic Press, London, pp. 276–322.Google Scholar
  44. Oates, J. F., and Whitesides, G. H. (1990). Association between olive colobus(Procolobus verus), diana guenons(Cercopithecus diana), and other forest monkeys in Sierra Leone.Am. J. Primatol. 21: 129–146.CrossRefGoogle Scholar
  45. Peters, R., Cloutier, S., Dube, D., Evans, A, Hastings, P., Kohn, D., and Sawer-Foner, B. (1988). The ecology of the weight of fruit on trees and shrubs in Barbados.Oecologia 74: 612–616.CrossRefGoogle Scholar
  46. Podolsky, R. D. (1990). Effects of mixed-species associations on resource use bySaimiri sciureus andCebus apella.Am. J. Primatol. 21: 147–158.CrossRefGoogle Scholar
  47. Rodman, P. S. (1973). Synecology of Bornean primates. I. A test for interspecific interactions in spatial distribution of five species.Am. J. Phys. Anthropol. 38: 655–660.PubMedCrossRefGoogle Scholar
  48. Rudran, R. (1978). Socioecology of the blue monkey(Cercopithecus mitis stuhlmanni) of the Kibale Forest, Uganda.Smithsonian Contrib. Zool. 249: 1–88.Google Scholar
  49. Schaller, G. (1972).The Serengeti Lion, University of Chicago Press, Chicago.Google Scholar
  50. Seyfarth, R., and Cheney, D. (1990). The assessment by vervet monkeys of their own and another species' alarm calls.Anim. Behav. 40: 754–764.CrossRefGoogle Scholar
  51. Skorupa, J. P. (1988).The Effect of Selective Timber Harvesting on Rainforest Primates in Kibale Forest, Uganda, Ph.D. dissertation, University of California, Davis.Google Scholar
  52. Skorupa, J. P. (1989). Crowned eaglesStephanoaetus coronatus in rainforest: Observations on breeding chronology and diet at a nest in Uganda.Ibis 131: 294–298.Google Scholar
  53. Sokal, R., and Rohlf, F. (1981).Biometry, W. H. Freeman, San Francisco.Google Scholar
  54. Struhsaker, T. T. (1975).The Red Colobus Monkey, University of Chicago Press, Chicago.Google Scholar
  55. Struhsaker, T. T. (1981). Polyspecific associations among tropical rain-forest primates.Z. Tierpsychol. 57: 268–304.Google Scholar
  56. Struhsaker, T. T., and Leakey, M. (1990). Prey selectivity by crowned hawk-eagles on monkeys in the Kibale Forest, Uganda.Behav. Ecol. Sociobiol. 26: 435–443.CrossRefGoogle Scholar
  57. Struhsaker, T. T., and Leland, L. (1979). Socioecology of five sympatric monkey species in the Kibale Forest, Uganda.Adv. Study Behav. 9: 159–227.CrossRefGoogle Scholar
  58. Terborgh, J. (1983).Five New World Primates: A Study in Comparative Ecology, Princeton University Press, Princeton, NJ.Google Scholar
  59. Terborgh, J. (1990). Mixed flock and polyspecific associations: Costs and benefits of mixed groups to birds and monkeys.Am. J. Primatol. 21: 87–100.CrossRefGoogle Scholar
  60. Terborgh, J., and Janson, C. H. (1986). The socioecology of primate groups.Ann. Rev. Ecol. Syst. 17: 111–135.CrossRefGoogle Scholar
  61. van Schaik, C. P. (1983). Why are diurnal primates living in groups?Behaviour 87: 120–144.Google Scholar
  62. Vickery, W. L., Giraldeau, L., Templeton, J. J., Kramer, D. L., and Chapman, C. A. (1991). Producers, scroungers, and group foraging.Am. Nat. 137: 847–863.CrossRefGoogle Scholar
  63. Waser, P. M. (1977). Feeding, ranging and group size in the mangabeyCercocebus albigena. In Clutton-Brock, T. T. (ed.),Primate Ecology, Academic Press, London, pp. 183–222.Google Scholar
  64. Waser, P. M. (1980). Polyspecific associations ofCercocebus albigena: Geographic variation and ecological correlates.Folia Primatol 33: 57–76.PubMedCrossRefGoogle Scholar
  65. Waser, P. M. (1982). Primate polyspecific associations: Do they occur by chance?Anim. Behav. 30: 1–8.CrossRefGoogle Scholar
  66. Waser, P. M. (1984). “Chance” and mixed-species associations.Behav. Ecol. Sociobiol. 15: 197–202.CrossRefGoogle Scholar
  67. Waser, P. M. (1987). Interactions among primate species. In Smuts, B. B.,et al. (eds.),Primate Societies, University of Chicago Press, Chicago, pp. 210–226.Google Scholar
  68. Whitesides, G. H. (1989). Interspecific associations of Diana monkeys,Cercopithecus diana, in Sierra Leone, West Africa: Biological significance or chance?Anim. Behav. 37: 760–776.CrossRefGoogle Scholar
  69. Wolf, N. G. (1985). Odd fish abandon mixed-species groups when threatened.Behav. Ecol. Sociobiol. 17: 47–52.CrossRefGoogle Scholar
  70. Wrangham, R. W., Gittleman, J., and Chapman, C. A. (1993). Constraints on group size in primates and carnivores: Population density and day-range as assays of exploitation competition.Behav. EcoL Sociobiol. 32: 199–210.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Colin A. Chapman
    • 1
  • Lauren J. Chapman
    • 1
  1. 1.Department of ZoologyUniversity of FloridaGainesvilleFlorida

Personalised recommendations