Estuaries

, Volume 28, Issue 6, pp 936–947 | Cite as

Functional trajectory models for assessment of transplanted eelgrass,Zostera marina L., in the Great Bay Estuary, New Hampshire

Article

Abstract

Functional trajectory models were used to assess the restoration of ecological functions in two transplanted eelgrass (Zostera marina L.) beds compared to three natural, reference beds in the Great Bay Estuary, New Hamsphire. Functional trajectory models describe the development of ecological functions over time in restored habitats relative to levels of function in natural habitats. We present the first application of trajectory models to transplanted seagrass and evaluate the utility of these models as a tool for assessing seagrass restoration. The project was an analysis of 9 yr of monitoring data, the longest monitoring of transplanted eelgrass to date. We used trajectory models to assess the time course of development of functions in transplanted beds by evaluating statistical trends, and to determine functional equivalence, defined as the time when functions in a transplanted bed reach an asymptote and are no more than 1 standard deviation below the reference mean. The functions modeled included primary production, 3-dimensional habitat structure, faunal use, and sediment filtering and trapping. Measured proxies for primary production and habitat structure increased logistically (sigmoidally) with time, reaching functional equivalence after 3 yr. In transplanted beds, trends in habitat use by infaunal invertebrates and fish were logarithmic, and values were functionally equivalent 2–4 yr after transplanting. We saw no trend in sediment filtering and trapping capacity of transplanted eelgrass over the 9 yr. Measures of function in both reference and transplanted beds fluctuated due to natural and anthropogenic disturbances. After reaching equivalence, measures of function in transplanted beds tracked those in reference beds, exhibiting long-term persistence and rebounding from disturbances similarly to reference beds. Trajectory models can illustrate the time course of eelgrass bed development, aiding the design of monitoring programs and the evaluation of ecological functional equivalence in seagrass restoration projects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bell, S. S., L. A. J. Clements, andJ. Kurdziel. 1993. Production in natural and restored seagrasses: A case study of a macrobenthic polychete.Ecological Applications 3:610–621.CrossRefGoogle Scholar
  2. Bosworth, W. andF. T. Short. 1993. Mitigation plant for the New Hampshire commercial marine terminal development project in Portsmouth, New Hampshire Department of Transportation, Port Authority, Portsmouth, New Hampshire.Google Scholar
  3. Craft, C., J. Reader, J. N. Sacco, andS. W. Broome. 1999. Twenty-five years of ecosystem development of constructedSpartina alterniflora (Loisel) marshes.Ecological Applications 9:1405–1419.CrossRefGoogle Scholar
  4. Davis, R. C. andF. T. Short. 1997. Restoring eelgrass (Zostera marina L.) habitat using a new transplanting technique: The horizontal rhizone method.Aquatic Botany 59:1–15.CrossRefGoogle Scholar
  5. Duarte, C. M., E. Benavent, andM. C. Sanchez. 1999. The microcosm of particles within seagrassPosidonia oceanica canopies.Marine Ecology Progress Series 181:289–295.CrossRefGoogle Scholar
  6. Duarte, C. M. andH. Kirkman. 2001. Methods for measurement of seagrass abundance and depth distribution, p. 146–149.In F. T. Short and R. G. Coles (eds.), Global Seagrass Research Methods. Elsevier Science B.V., Amsterdam, The Netherlands.Google Scholar
  7. Duarte, C. M. andK. Sand-Jensen. 1990. Seagrass colonization: Biomass development and shoot demography inCymodocea nodosa patches.Marine Ecology Progress Series 67:97–103.CrossRefGoogle Scholar
  8. Erftemeijer, P. L. A. andE. W. Koch. 2001. Sediment geology methods for seagrass habitat, p. 345–367.In F. T. Short and R. G. Coles (eds.), Global Seagrass Research Methods. Elsevier Science B.V., Amsterdam, The Netherlands.CrossRefGoogle Scholar
  9. Fonseca, M. S., W. J. Kenworthy, D. R. Colby, K. A. Rittmaster, andG. W. Thayer. 1990. Comparisons of fauna among natural and transplanted eelgrass, Zostera marina meadows: Criteria for mitigation.Marine Ecology Progress Series 65:251–264.CrossRefGoogle Scholar
  10. Fonseca, M. S., W. J. Kenworthy, andF. X. Courtney. 1996a. Development of planted seagrass beds in Tampa Bay, Florida, USA. I. Plant components.Marine Ecology Progress Series 132: 127–139.CrossRefGoogle Scholar
  11. Fonseca, M. S., W. J. Kenworthy, andG. W. Thayer. 1998. Guidelines for conservation and restoration of seagrass in the United States and adjacent waters. NOAA/NMFS Coastal Ocean Program Decision Analysis Series No. 12. NOAA Coastal Ocean Office, Silver Spring, Maryland.Google Scholar
  12. Fonseca, M. S., D. L. Meyer, andM. O. Hall. 1996b. Development of planted seagrass beds in Tampa Bay, Florida, U.S.A. II. Faunal components.Marine Ecology Progress Series 132:141–156.CrossRefGoogle Scholar
  13. Fonseca, M. S., J. C. Zieman, G. W. Thayer, andJ. S. Fisher. 1983. The role of current velocity in structuring eelgrass (Zostera marina L.) meadows.Estuarine Coastal and Shelf Science 17: 367–380.CrossRefGoogle Scholar
  14. Gambi, M. C., A. R. M. Nowell, andP. A. Jumars. 1990. Flume observations on flow dynamics inZostera marina (eelgrass) beds.Marine Ecology Progress Series 61:159–169.CrossRefGoogle Scholar
  15. Harrison, P. G. 1990. Variations in success of eelgrass transplants over a five-years’ period.Environmental Conservation 17:157–163.CrossRefGoogle Scholar
  16. Heck, Jr.,K. L., K. W. Able, M. P. Fahay, andC. T. Roman. 1989. Fishes and decapod crustaceans of Cape Cod eelgrass meadows: Species composition, seasonal abundance patterns and comparison with unvegetated substrates.Estuaries, 12:59–65.CrossRefGoogle Scholar
  17. Hemminga, M. andC. M. Duarte. 2000. Seagrass Ecology. Cambridge University Press, Cambridge, Massachusetts.Google Scholar
  18. Hine, A. C., M. W. Evans, R. A. Davis Jr., andD. A. Belknap. 1987. Depositional response to seagrass mortality along a low-energy, barrier-island coast: West-central Florida.Journal of Sedimentary Petrology 57:431–439.Google Scholar
  19. Homziak, J., M. S. Fonseca, andW. J. Kenworthy. 1982. Macrobenthic community structure in a transplanted eelgrass (Zostera marina) meadow.Marine Ecology Progress Series 9: 211–221.CrossRefGoogle Scholar
  20. Hoven, H. M., H. E. Gaudette, andF. T. Short. 1999. Isotope ratios of206Pb/207Pb in eelgrass,Zostera marina, indicate sources of Pb in an estuary.Marine Environment Research 45:377–387.CrossRefGoogle Scholar
  21. Jacobs, R. P. W. M. 1979. Distribution and aspects of the production and biomass of eelgrass,Zostera marina L., at Roscoff, France.Aquatic Botany 7:151–172.CrossRefGoogle Scholar
  22. Kentula, M. E., R. P. Brooks, S. E. Gwin, C. C. Holland, A. D. Sherman, andJ. C. Sifneos. 1992. An apporoach to improving decision making in wetland restoration and creation. U.S. Environmental Protection Agency, Corvallis, Oregon, Island Press, Washington, D.C.Google Scholar
  23. Koch, E. W. 2001. Beyond light: Physical, geological and geochemical parameters as possible submersed aquatic vegetation habitat requirements.Estuaries 24:1–17.CrossRefGoogle Scholar
  24. Lalumiere, R., D. Messier, J. Fournier, andC. P. McRoy. 1994. Eelgrass meadows in a low arctic environment, the northeast coast of James Bay, Quebec.Aquatic Botany 47:303–315.CrossRefGoogle Scholar
  25. Lubbers, L., W. R. Boynton, andW. M. Kemp. 1990. Variations in structure of estuarine fish communities in relation to abundance of submersed vascular plants.Marine Ecology Progress Series 65:1–14.CrossRefGoogle Scholar
  26. Marshall, N. andK. Lukas. 1970. Preliminary observations on the properties of bottom sediments with and without eelgrass, Zostera marina, cover.Proceedings of the National Shellfisheries Association 60:107–111.Google Scholar
  27. Morgan, P. A. andF. T. Short. 2002. Using functional trajectories to track constructed salt marsh development in the Great Bay Estuary, Maine/New Hampshire, USA.Restoration Ecology 10: 461–473.CrossRefGoogle Scholar
  28. Muehlstein, L. K., D. Porter, andF. T. Short. 1988.Labyrinthula sp., a marine slime mold producing the symptoms of wasting disease in eelgrass,Zostera marina.Marine Biology 99:465–472.CrossRefGoogle Scholar
  29. Mueller, C. W., D. C. Munns, E. Petrocelli, G. Pesch, W. Nelson, D. Burdick, F. T. Short, and R. Johnston. 1992. Standard operating procedures and field methods used for conducting ecological risk assessment case studies. United States Navy, NCCOSC Tech. Doc. 2296, San Diego, California.Google Scholar
  30. Nienhuis, P. H., B. H. H. De Bree, P. M. J. Herman, A. M. B. Holland, J. M. Werschuure, andE. G. J. Wessel. 1996. Twenty-five years of changes in the distribution and biomass of eelgrass,Zostera marina, in Grevelingen lagoon, the Netherlands.Netherlands of Journal of Aquatic Ecology 30:107–117.CrossRefGoogle Scholar
  31. Olesen, B. andK. Sand-Jensen. 1994a. Biomass-density patterns in the temperate seagrass (Zostera marina).Marine Ecology Progress Series 109:283–291.CrossRefGoogle Scholar
  32. Olesen, B. andK. Sand-Jensen. 1994b. Patch dynamics of eelgrassZostera marina.Marine Ecology Progress Series 106:147–156.CrossRefGoogle Scholar
  33. Orth, R. J. 1973. Benthic infauna of eelgrass,Zostera marina, beds.Chesapeake Science 14:258–269.CrossRefGoogle Scholar
  34. Orth, R. J. 1977. The importance of sediment stability in seagrass communities, p. 281–300.In B. C. Coull and B. W. Barich (eds.), Ecology of Marine Benthos. University of South Carolina Press, Columbia, South Carolina.Google Scholar
  35. Orth, R. J. andK. A. Moore. 1984. Distribution and abundance of submerged aquatic vegetation in Chesapeake Bay: An historical perspective.Estuaries 7:531–540.CrossRefGoogle Scholar
  36. Pearson, T. H. andR. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment.Oceanography and Marine Biology: An Annual Review 16:229–311.Google Scholar
  37. Raposa, K. A. andC. A. Oviatt. 2000. The influence of contiguous shoreline type, distance from shore and vegetation biomass on nekton community structure in eelgrass beds.Estuaries 23: 46–55.CrossRefGoogle Scholar
  38. Rasmussen, E. 1977. The wasting disease of eelgrass and its effects on environmental factors and fauna, p. 1–51.In P. McRoy and C. Helfferich (eds.), Marine Science, Volume 4. Seagrass Ecosystems: A Scientific Perspective. Marcel Dekker, Inc, New York.Google Scholar
  39. Rosenberg, R. 1976. Benthic faunal dynamics during succession following pollution abatement in a Swedish estuary.OIKOS 27:414–427.CrossRefGoogle Scholar
  40. SAS Institute Inc. 1989. SAS/STAT User’s Guide Version 6, 4th edition Volume 2. SAS Institute Inc., Cary, North Carolina.Google Scholar
  41. Sheridan, P. 2004. Comparison of restored and natural seagrass beds near Corpus Christi, Texas.Estuaries 27:781–792.CrossRefGoogle Scholar
  42. Sheridan, P., G. McMahan, K. Hammerstrom, andW. Pulich, Jr. 1998. Factors affecting restoration ofHalodule wrightii to Galveston Bay, Texas.Restoration Ecology 6:144–158.CrossRefGoogle Scholar
  43. Short, F. T. (eds.) 1992. The Ecology of the Great Bay Estuary, New Hampshire and Maine: An Estuarine Profile and Bibliography. National Oceanic and Atmospheric Administration-Coastal Ocean Program Publication, Durham, New Hampshire.Google Scholar
  44. Short, F. T. andD. M. Burdick. 1996. Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts.Estuaries 19:730–739.CrossRefGoogle Scholar
  45. Short, F. T., D. M. Burdick, andJ. E. Kaldy. 1995. Mesocosm experiments quantifying the effects of eutrophication on eelgrass,Zostera marina.Limnology and Oceanography 40:740–749.CrossRefGoogle Scholar
  46. Short, F. T., D. M. Burdick, C. A. Short, R. C. Davis, andP. A. Morgan. 2000. Developing success criteria for restored, eelgrass, salt marsh and mudflat habitats.Ecological Engineering 15:239–252.CrossRefGoogle Scholar
  47. Short, F. T., R. C. Davis, B. S. Kopp, C. A. Short, andD. M. Burdick. 2002. Site selection model for optimal transplantation of eelgrassZostera marina in the northeastern, U.S..Marine Ecology Progress Series 227:253–267.CrossRefGoogle Scholar
  48. Short, F. T., A. C. Mathieson, andJ. I. Nelson. 1986. Recurrence of the eelgrass wasting disease at the border of New Hampshire and Marine, USA.Marine Ecology Progress Series 29:89–92.CrossRefGoogle Scholar
  49. Short, F. T. andC. A. Short. 1984. The seagrass filter: Purification of estuarine and coastal waters, p. 395–413.In V. S. Kennedy (ed.), The Estuary as a Filter. Academic Press Inc., Orlando, Florida.Google Scholar
  50. Short, F. T. andS. Wyllie-Echeverria. 1996. Natural and human induced disturbance of seagrasses.Environmental Conservation 23:17–27.CrossRefGoogle Scholar
  51. Simenstad, C. A. andR. M. Thom. 1996. Functional equivalency trajectories of the restored Gog-Le-Hi-Te estuarine wetland.Ecological Applications 6:38–56.CrossRefGoogle Scholar
  52. Spalding, M., M. Taylor, C. Ravilious, F. T. Short, andE. P. Green. 2003. Global overview: The distribution and status of seagrasses, p. 5–26.In E. P. Green and F. T. Short (eds.), World Atlas of Seagrasses: Present Status and Future Conservation. University of California Press, Berkeley, California.Google Scholar
  53. Thayer, G. W., W. J. Kenworthy, and M. S. Fonseca. 1984. The ecology of eelgrass meadows of the Atlantic coast: A community profile. U.S. Fish and Wildlife Service FWS/OBS-84/02, Slidell, Louisiana.Google Scholar
  54. Twilley, R. R., V. H. Rivera-Monroy, R. Chen, andL. Botero. 1998. Adapting and ecological mangrove model to simulate trajectories in restortion, ecology.Marine Pollution Bulletin 37: 404–419.CrossRefGoogle Scholar
  55. Tyler, A. C. andJ. C. Zieman. 1999. Patterns of development in the creekbank region of a barrier islandSpartina alterniflora marsh.Marine Ecology Progress Series 189:1–7.CrossRefGoogle Scholar
  56. Valiela, I., K. Foreman, M. Lamontagne, D. Hersh, J. Costa, P. Peckol, B. Demeo-Anderson, C. D’avanzo, M. Babione, C.-H. Sham, J. Brawley, andK. Lajtha. 1992. Couplings of watersheds and coastal waters: Sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts.Estuaries 15: 443–457.CrossRefGoogle Scholar
  57. Ward, L. G., W. V. Kemp, andW. R. Boynton. 1984. The influence of waves and seagrass communities on suspended particulates in an estuarine embayment.Marine Geology 59:85–103.CrossRefGoogle Scholar
  58. Zar, J. H. 1999. Biostatistical Analysis. Upper Saddle River, 4th edition. Prentice Hall, Inc., Upper Saddle, River, New Jersey.Google Scholar
  59. Zedler, J. B. andJ. C. Callaway. 1999. Tracking wetland restoration: Do mitigation sites follow desired trajectories?Restoration Ecology 7:69–73.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2005

Authors and Affiliations

  1. 1.Jackson Estuarine LaboratoryUniversity of New HampshireDurham

Personalised recommendations