Estuaries

, Volume 28, Issue 6, pp 795–811

Evolution of tidal creek networks in a high sedimentation environment: A 5-year experiment at Tijuana Estuary, California

  • Katy J. Wallace
  • John C. Callaway
  • Joy B. Zedler
Article

Abstract

In a large (8 ha) salt marsh restoration site, we tested the effects of excavating tidal creeks patterned after reference systems. Our purposes were to enhance understanding of tidal creek networks and to test the need to excavate creeks during salt marsh restoration. We compared geomorphic changes in areas with and without creek networks (n = 3; each area 1.3 ha) and monitored creek cross-sectional areas, creek lengths, vertical accretion, and marsh surface elevations for 5 yr that included multiple sedimentation events. We hypothesized that cells with creeks would develop different marsh surface and creek network characteristics (i.e., surface elevation change, sedimentation rate, creek cross-sectional area, length, and drainage density). Marsh surface vertical accretion averaged 1.3 cm yr−1 with large storm inputs, providing the opportunity to assess the response of the drainage network to extreme sedimentation rates. The constructed creeks initially filled due to high accretion rates but stabilized at cross-sectional areas matching, or on a trajectory toward, equilibrium values predicted by regional regression equations. Sedimentation on the marsh surface was greatest in low elevation areas and was not directly influenced by creeks. Time required for cross-sectional area stabilization ranged from 0 to > 5 yr, depending on creek order. First-order constructed creeks lengthened rapidly (mean rate of 1.3 m yr−1) in areas of low elevation and low vegetation cover. New (volunteer) creeks formed rapidly in cells without creeks in areas with low elevation, low vegetation cover, and high elevation gradient (mean rate of 6.2 m yr−1). After 5 yr, volunteer creeks were, at most, one-fourth the area of constructed creeks and had not yet reached the upper marsh plain. In just 4 yr, the site’s drainage density expanded from 0.018 to reference levels of 0.022 m m−2. Pools also formed on the marsh plain due to sediment resuspension associated with wind-driven waves. We conclude that excavated creeks jump-started the development of drainage density and creek and channel dimensions, and that the tidal prism became similar to those of the reference site in 4–5 yr.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allen, J. R. L. 2000. Morphodynamics of Holocene salt marshes: A review sketch from the Atlantic and Southern North Sea coasts of Europe.Quaternary Science Reviews 19:1155–1231.CrossRefGoogle Scholar
  2. Bartholdy, J. 2000. Processes controlling import of fine-grained sediment to tidal areas: A simulation model, p. 13–30.In K. Pye and J. R. L. Allen (eds.), Coastal and Estuarine Environments: Sedimentology, Geomorphology, and Geoarchaeology, Volume 175. Geological Society, Special Publications, London, U.K.Google Scholar
  3. Battalio, R. andB. DeTemple. 1998. The Preliminary Feasibility of a Conceptual Sediment Management and Enhancement Plan for Goat Canyon Creek. Philip Williams and Associates, Corte Madera, California.Google Scholar
  4. Bayliss-Smith, T. P., R. Healey, R. Lailey, T. Spencer, andD. R. Stoddart. 1979. Tidal flows in salt marsh creeks.Estuarine and Coastal Marine Science 9:235–255.CrossRefGoogle Scholar
  5. Boon, III,J. D. 1975. Tidal discharge asymmetry in a salt marsh drainage system.Limnology and Oceanography 20:71–80.Google Scholar
  6. Boumans, R. M. J. andJ. W. Day. 1993. High precision measurements of sediment elevation in shallow coastal areas using a sedimentation-erosion table.Estuaries 16:375–380.CrossRefGoogle Scholar
  7. Cahoon, D. R., J. C. Lynch, andA. N. Powell. 1996. Marsh vertical accretion in a southern California estuary, U.S.A.Estuarine Coastal and Shelf Science 43:19–32.CrossRefGoogle Scholar
  8. Cahoon, D. R. andR. E. Turner. 1989. Accretion and canal impacts in a rapidly subsiding wetland. II. Feldspar marker horizon technique.Estuaries 12:260–268.CrossRefGoogle Scholar
  9. Callaway, J. C. 2001. Hydrology and substrate, p. 89–118.In J. B. Zedler (ed.), Handbook for Restoring Tidal Wetlands. CRC Press, Boca Raton, Florida.Google Scholar
  10. Callaway, J. C., R. D. DeLaune, andW. H. Patrick, Jr. 1997. Sediment accretion rates from four coastal wetlands along the Gulf of Mexico.Journal of Coastal Research 13:181–191.Google Scholar
  11. Callaway, J. C., G. Sullivan, andJ. B. Zelder. 2003. Species-rich plantings increase biomass and nitrogen accumulation in a wetland restoration experiment.Ecological Applications 13: 1626–1639.CrossRefGoogle Scholar
  12. Callaway, J. C. andJ. B. Zedler. 2004. Restoration of urban salt marshes: Lessons from southern California.Urban Ecosystems 7:133–150.CrossRefGoogle Scholar
  13. Christiansen, T., P. L. Wiberg, andT. G. Milligan. 2000. Flow and sediment transport on a tidal salt marsh surface.Estuarine Coastal and Shelf Science 50:315–331.CrossRefGoogle Scholar
  14. Coats, R. N., P. G. Williams, C. K. Cuffe, J. B. Zedler, D. Reed, S. M. Waltry, and J. S. Stratton Noller. 1995. Design guidelines for tidal channels in coastal wetlands. Prepared for U.S. Army Corps of Engineers Waterways Experiment Station. Phillip Williams and Associates, Ltd. Report #934. San Francisco, California.Google Scholar
  15. Cornu, C. andS. Sadro. 2002. Physical and functional responses to experimental marsh surface elevation manipulation in Coos Bay’s South Slough.Restoration Ecology 10:474–486.CrossRefGoogle Scholar
  16. Crooks, S. and K. Pye. 2000. Sedimentological controls on the erosion and morphology of salt marshes: Implications for flood defence and habitat recreation, p. 207–222.In K. Pye and J. R. L. Allen (eds.), Coastal and Estuarine Environments: Sedimentology, Geomorphology, and Geoarchaeology, Volume 175. Geological Society, Special Publications, London, U.K.Google Scholar
  17. Crooks, S., J. Schutten, G. D. Sheern, K. Pye, andA. J. Davy. 2002. Drainage and elevation as factors in the restoration of salt marsh in Britain.Restoration Ecology 10:591–602.CrossRefGoogle Scholar
  18. D’Alpaos, A., S. Lanzoni, M. Marani, S. Fagherazzi, and A. Rinaldo. 2005. Tidal network ontogeny: Channel initiation and early development, Volume 110.Journal of Geophysical Research F02001, doi:10.1029/2004JF000182.Google Scholar
  19. Desmond, J. S., J. B. Zedler, andG. D. Williams. 2000. Fish use of tidal creek habitats in two southern California salt marshes.Ecological Engineering 14:233–252.CrossRefGoogle Scholar
  20. Eertman, R. H. M., B. A. Kornman, E. Stikvoort, andH. VerBeek. 2002. Restoration of the Sierperda tidal marsh in the Scheldt Estuary, the Netherlands.Restoration Ecology 10:438–449.CrossRefGoogle Scholar
  21. Elwany, H., D. Hansen, N. Marshall, R. McCreight, K. Marshall, and M. Jilka. 2003. Tijuana Estuary Model Marsh Sedimentation and Hydraulic Evaluation. Coastal Environments, CE No. 03-02, La Jolla, California.Google Scholar
  22. Emmerson, R. H. C., J. M. A. Manatunge, C. L. Macleod, andJ. N. Lester. 1997. Tidal exchanges between Orplands managed retreat site and the Blackwater estuary, Essex.Journal of Water and Environmental Management 11:363–372.CrossRefGoogle Scholar
  23. Entrix Inc., Pacific Estuarine Research Laboratory and Philip Williams and Associates, Ltd. 1991. Tijuana Estuary tidal restoration program. Draft Environmental Impact Report and Environmental Impact Statement. Volume 1–3. State Coastal Conservacy, Oakland, California.Google Scholar
  24. Fagherazzi, S. andD. J. Furbish. 2001. On the shape and widening of salt marsh creeks.Journal of Geophysical Research 106:991–1003.CrossRefGoogle Scholar
  25. Fagherazzi, S., E. J. Gabet, andD. J. Furbish. 2004. The effect of bidirectional flow on tidal channel planforms.Earth Surface Processes and Landforms 29:295–309.CrossRefGoogle Scholar
  26. French, J. R. andT. Spencer. 1993. Dynamics of sedimentation in a tide-dominated backbarrier saltmarsh, Norfolk, U.K.Marine Geology 110:315–331.CrossRefGoogle Scholar
  27. French, J. R. andD. R. Stoddart. 1992. Hydrodynamics of salt marsh creek systems: Implications for marsh morphological development and material exchange.Earth Surface Processes and Landforms 17:235–252.CrossRefGoogle Scholar
  28. Friedrichs, C. T. andJ. E. Perry. 2001. Tidal salt marsh morphodynamics: A synthesis.Journal of Coastal Research 27:7–27.Google Scholar
  29. Gabet, E. J. 1998. Lateral migration and bank erosion in a salt marsh tidal channel in San Francisco Bay, California.Estuaries 21:745–753.CrossRefGoogle Scholar
  30. Garofalo, D. 1980. The influence of wetland vegetation on tidal stream channel migration and morphology.Estuaries 3:258–270.CrossRefGoogle Scholar
  31. Gee, G. W. andJ. W. Bauder. 1986. Particle-size analysis, p. 383–411.In A. Klute (ed.), Methods of Soil Analysis: Part I: Physical and Mineralogical Methods. American Society of Agronomy, Madison, Wisconsin.Google Scholar
  32. Greer, K. andD. Stow. 2003. Vegetation type conversion in Los Penasquitos Lagoon, California: An examination of the role of watershed urbanization.Environmental Management 31:489–503.CrossRefGoogle Scholar
  33. Haltiner, J., J. B. Zedler, K. E. Boyer, G. D. Williams, andJ. C. Callaway. 1997. Influence of physical processes on the design, functioning, and evolution of restored tidal wetlands in California (USA).Wetlands Ecology and Management 4:73–92.CrossRefGoogle Scholar
  34. Hatton, R. S., R. D. Delaune, andW. H. Patrick, Jr. 1983. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana.Limnology and Oceanography 28: 494–502.CrossRefGoogle Scholar
  35. Horton, R. E. 1945. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology.Bulletin of the Geological Society of America 56:275–370.CrossRefGoogle Scholar
  36. Keer, G. H. andJ. B. Zedler. 2002. Salt marsh canopy architecture differs with the number and composition of species.Ecological Applications 12:456–473.CrossRefGoogle Scholar
  37. Lawrence, D. S. L., J. R. L. Allen, andG. M. Havelock. 2004. Salt marsh morphodynamics: An investigation of tidal flows and marsh channel equilibrium.Journal of Coastal Research 20: 301–316.CrossRefGoogle Scholar
  38. Letzsch, W. S. andR. W. Frey. 1980. Deposition and erosion in a Holocene salt marsh, Sapelo Island, Georgia.Journal of Sedimentary Petrology 50:529–542.Google Scholar
  39. Madon, S. P., J. West, andJ. B. Zedler. 2002. Responses of fish to topographic heterogeneity in an experimental marsh (California).Ecological Restoration 20:56–58.Google Scholar
  40. Madon, S. P., G. D. Williams, J. M. West, andJ. B. Zedler. 2001. The importance of marsh access to growth of the California killifish,Fundulus parvipinnis, evaluated through bioenergetics modeling.Ecological Modelling 136:149–165.CrossRefGoogle Scholar
  41. Micheli, E. R. andJ. W. Kirchner. 2002. Effects of wet meadow riparian vegetation on streambank erosion.Earth Surface Processes and Landforms 27:687–697.CrossRefGoogle Scholar
  42. Minello, T. J., R. J. Zimmerman, andR. Medina. 1994. The importance of edge for natant macrofauna in a created salt marsh.Wetlands 14:184–198.Google Scholar
  43. Morris, R. K. A., I. S. Reach, M. J. Duffy, I. S. Collins, andR. N. Leafe. 2004. Forum: On the loss of saltmarshes in south-east England and the relationship withNereis diversicolor.Journal of Applied Ecology 41:787–791.CrossRefGoogle Scholar
  44. Morzaria-Luna, H. 2004. Determinants of plant species assemblages in the California marsh plain: Implications for restoration of ecosystem function. Ph.D. Dissertation, University of Wisconsin, Madison, Wisconsin.Google Scholar
  45. Morzaria-Luna, H., J. C. Callaway, G. Sullivan, andJ. B. Zedler. 2004. Relationships between topographic heterogeneity and vegetation patterns in a Californian salt marsh.Journal of Vegetation Science 14:523–530.CrossRefGoogle Scholar
  46. Munk, W. 2003. Ocean-freshening, sea level rising.Science 300: 2041–2043.CrossRefGoogle Scholar
  47. Myrick, R. M. andL. B. Leopold. 1963. Hydraulic geometry of a small tidal estuary. Geological survey professional paper 422-B:B1–B18. U.S. Government Printing Office, Washington, D.C.Google Scholar
  48. O’Brien, E. and J. B. Zedler. 2005. Accelerating the restoration of vegetation in a southern California salt marsh.Wetlands Ecology and Management in press.Google Scholar
  49. Onuf, C. P. 1987. The Ecology of Mugu Lagoon, California: An Estuarine Profile. Biological, U.S. Department of Interior, Fish and Wildlife Service, National Wetlands Research Center, Report 85 (7.15). Washington, D.C.Google Scholar
  50. Paramor, O. A. L. andR. G. Hughes. 2004. The effects of bioturbation and herbivory by the polychaeteNereis diversicolor on loss of saltmarsh in south-east England.Journal of Applied Ecology 41:449–463.CrossRefGoogle Scholar
  51. Perillo, G. M. E. 2003. new mechanisms studied for creek formation in tidal flats: From crabs to tidal channels.Eos Transactions American Geophysical Union 84:1–5.CrossRefGoogle Scholar
  52. Pestrong, R. 1965. The development of drainage patterns on tidal marshes.Stanford University Publications, Geological Sciences 10:1–87.Google Scholar
  53. Pestrong, R. 1972. Tidal-flat sedimentation at Cooley Landing, southwest San Francisco Bay.Sedimentary Geology 8:251–288.CrossRefGoogle Scholar
  54. Pethick, J. S. 1980. Velocity surges and asymmetry in tidal channels.Estuarine and Coastal Marine Science 11:331–345.CrossRefGoogle Scholar
  55. Pethick, J. S. 1981. Long-term accretion rates on tidal salt marshes.Journal of Sedimentary Petrology 51:571–577.Google Scholar
  56. Pethick, J. S. 1984. An Introduction to Coastal Geomorphology. Butler and Tanner Ltd, Frome Somerset, U.K.Google Scholar
  57. Postma, H. 1961. Transport and accumulation of suspended matter in the Dutch Wadden Sea.Netherlands Journal of Sea Research 1:148–190.CrossRefGoogle Scholar
  58. Pye, K. and J. R. L. Allen. 2000. Past, present, and future interactions, management challenges and research needs in coastal and estuarine environments, p. 1–4.In K. Pye and J. R. L. Allen (eds.), Coastal and Estuarine Environments: Sedimentology, Geomorphology, and Geoarchaeology, Volume 175. Geological Society, Special Publications, London, U.K.Google Scholar
  59. Reed, D. J., T. Spencer, A. L. Murray, J. R. French, andL. Leonard. 1999. Marsh surface sediment deposition and the role of tidal creeks: Implications for created and managed coastal marshes.Journal of Coastal Conservation 5:81–90.Google Scholar
  60. Schoellhamer, D. H. 1996. Factors affecting suspended-solids concentrations in south San Francisco Bay, California.Journal of Geophysical Research 101:12087–12095.CrossRefGoogle Scholar
  61. Schostak, L. E., R. G. D. Davidson-Arnott, J. Ollerhead, and R. A. Kostaschuk. 2002. Patterns of flow and suspended sediment concentration in a macrotidal saltmarsh creek, Bay of Fundy, Canada, p. 59–74.In K. Pye and J. R. L. Allen (eds.), Coastal and Estuarine Environments: Sedimentology, Geomorphology and Geoarchaeology, Volume 175. Geological Society, Special Publications, London, U.K.Google Scholar
  62. Shideler, G. L. 1984. Suspended sediment responses in a wind-dominated estuary of the Texas Gulf Coast.Journal of Sedimentary Petrology 54:731–745.Google Scholar
  63. Simenstad, C. A. andR. M. Thom. 1996. Functional equivalency trajectories of the restored Gog-Le-Hi-Te estuarine wetland.Ecological Applications 6:38–58.CrossRefGoogle Scholar
  64. Strahler, A. N. 1964. Quantitative geomorphology of drainage basins and channel networks, p. 439–476.In V. T. Chow (ed.), Handbook of Applied Hydrology. McGraw-Hill, New York.Google Scholar
  65. Thom, R. G., R. Zeigler, andA. B. Borde. 2002. Floristic development patterns in a restored Elk River estuarine marsh, Grays Harbor, Washington.Restoration Ecology 10:487–498.CrossRefGoogle Scholar
  66. Thorbjarnarson, K. andS. Stuart. 1998. Sediment grain size characterization for the Model Marsh region of the Tijuana Estuary. Department of Geological Sciences, San Diego State University, San Diego, California.Google Scholar
  67. Thrush, S. F., J. E. Hewitt, V. J. Cummings, J. I. Ellis, C. Hatton, A. Lohrer, andA. Norkko. 2004. Muddy waters: Elevating sediment input to coastal estuarine habitats.Frontiers in Ecology 2:299–306.CrossRefGoogle Scholar
  68. U.S. Army Corps of Engineers (USACE), Waterways Experiment Station. 1984. Shore protection manual. Volume 1. U.S. Government Printing Office, Washington, D.C.Google Scholar
  69. Van Proosdij, D., J. Ollerhead, and R. G. D. David-Arnott. 2000. Controls on suspended sediment deposition over single tidal cycles in a macrotidal saltmarsh, Bay of Fundy, Canada, p. 43–58.In K. Pye and J. R. L. Allen (eds.), Coastal and Estuarine Environments: Sedimentology, Geomorphology and Geoarchaeology, Volume 175. Geological Society, Special Publications, London, U.K.Google Scholar
  70. Vivian-Smith, G. 2001. Developing a framework for restoration, p. 39–88.In J. B. Zedler (ed.), Handbook for Restoring Tidal Wetlands. CRC Press, Boca Raton, Florida.Google Scholar
  71. Voulgaris, G. andS. Meyers. 2004. Temporal variability of hydrodynamics, sediment concentration and sediment settling velocity in a tidal creek.Continental Shelf Research 24:1659–1683.CrossRefGoogle Scholar
  72. Ward, K. M., J. C. Callaway, andJ. B. Zedler. 2003. Episodic colonization of an intertidal mudflat by native cordgrass (Spartina foliosa) at Tijuana Estuary.Estuaries 26:116–130.CrossRefGoogle Scholar
  73. Ward, L. G., W. W. Kemp, andW. R. Boynton. 1984. The influence of waves and seagrass communities on suspended particulates in an estuarine embayment.Marine Geology 10:85–103.CrossRefGoogle Scholar
  74. Weis, D. A., J. C. Callaway, andR. M. Gersberg. 2001. Vertical accretion rates and heavy metal chronologies in wetland sediment of the Tijuana Estuary.Estuaries 24:840–850.CrossRefGoogle Scholar
  75. Williams, G. D. andJ. S. Desmond. 2001. Restoring assemblages of invertebrates and fishes, p. 235–270.In J. B. Zedler (ed.), Handbook for Restoring Tidal Wetlands. CRC Press, Boca Raton, Florida.Google Scholar
  76. Williams, P. B. andM. K. Orr. 2002. Physical evolution of restored breached levee salt marshes in the San Francisco Bay estuary.Restoration Ecology 10:527–542.CrossRefGoogle Scholar
  77. Williams, P. B., M. K. Orr, andN. J. Garrity. 2002. Hydraulic geometry: A geomorphic design tool for tidal marsh channel evolution in wetland restoration projects.Restoration Ecology 10:577–590.CrossRefGoogle Scholar
  78. Zedler, J. B. 1982. The Ecology of Southern California Coastal Salt Marshes: A Community Profile. U.S. Fish and Wildlife Service, FWS/OBS-81/54, Washington, D.C.Google Scholar
  79. Zedler, J. B. (ed.). 2001. Handbook for Restoring Tidal Wetlands. CRC Press, Boca Raton, Florida.Google Scholar
  80. Zedler, J. B., J. C. Callaway, andG. Sullivan. 2001. Declining biodiversity: Why species matter and how their functions might be restored in California tidal marshes.BioScience 51: 1005–1017.CrossRefGoogle Scholar
  81. Zedler, J. B., C. S. Nordby, andB. E. Kus. 1992. The Ecology of Tijuana Estuary: A National Estuarine Research Reserve. National Oceanic and Atmospheric Administration Office of Coastal Resource Management, Sanctuaries and Reserves Division, Washington, D.C.Google Scholar
  82. Zeff, M. L. 1999. Salt marsh tidal channel morphometry: Applications for wetland creation and restoration.Restoration Ecology 7:205–211.CrossRefGoogle Scholar

Sources of Unpublished Materials

  1. Elwany, H. unpublished data. Coastal Environments, Inc. 2166 Avenida de la Playa, Suite E, La Jolla, California 92037.Google Scholar
  2. Haltiner, J. personal communication. Geomorphologist, Philip Williams and Associates, Inc. 720 California Street, 6th Floor, San Francisco, California 94108-2404.Google Scholar
  3. Knox, J. unpublished data. PSA4, program for particle size analysis. Geomorphology Laboratory, Department of Geography, 550 N Park Street, Madison, Wisconsin 53706-1491.Google Scholar
  4. Mickelson, D. personal communication. Department of Geology and Geophysics, University of Wisconsin, 1215 W Dayton Street, Madison, Wisconsin 53706-1692.Google Scholar
  5. National Estuarine Reserve Centralized Data Management Office (NERR). 2005. unpublished data. cdmo.baruch.sc.edu/Maps/TJRMap.htmGoogle Scholar
  6. San Diego-Lindbergh field, California. 1999–2002. unpublished data. Monthly average wind speeds. www.wrcc.dri.edu/htmlfiles/westwind.final.htmlGoogle Scholar
  7. Ramsar. 2005. unpublished data. Ramsar list. www.ramsar.org.Google Scholar
  8. Rick Engineering Inc. 2003. unpublished data. Digital imagery. 5620 Friars Road, San Diego, California 92110.Google Scholar

Copyright information

© Estuarine Research Federation 2005

Authors and Affiliations

  • Katy J. Wallace
    • 1
  • John C. Callaway
    • 2
  • Joy B. Zedler
    • 1
  1. 1.Botany Department and ArboretumUniversity of WisconsinMadison
  2. 2.Department of Environmental ScienceUniversity of San FranciscoSan Francisco

Personalised recommendations