Advertisement

Estuaries

, Volume 25, Issue 3, pp 325–336 | Cite as

Primary production and decomposition ofSarcocornia fruticosa (L.) scott andPhragmites australis Trin. Ex Steudel in the Po Delta, Italy

  • Francesco ScartonEmail author
  • John W. Day
  • Andrea Rismondo
Article

Abstract

From September 1994 through October 1995 aboveground and belowground production ofSarcocornia fruticosa andPhragmites australis was studied at two sites in the Po Delta. In 1995, aboveground production forS. fruticosa in an intertidal site was 678 g dw m−2 yr−1 with a peak live biomass of 1,008 g m−2; belowground production was 1,260 g m−2 with a peak live biomass of 3,735 g m−2. A litter bag decomposition study showed that after 69 wk there were 3.7%, 64.3%, and 66.6% of the original mass of leafy stems, woody stems, and roots, respectively. In a reed bed, which experiences brackish conditions,P. australis aboveground production was 876 g m−2 with a peak live biomass of 780 g m−2; belowground production was 2,263 g m−2 with a peak live biomass of 4,087 g m−2. After 65 wk, there was 45.4%, 50.4%, and 29.3%, respectively, of leaves, stems, and rhizomes remaining of the initial biomass. At both sites, regular submersion by salt water probably leads to lower aboveground biomass and higher belowground biomass than reported for other Mediterranean coastal sites. The high belowground biomass can contribute to accretion to offset rising sea level.

Keywords

Biomass Venice Lagoon Aboveground Production Belowground Production Intertidal Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Berger, A., J. J. Corre, andG. Heim. 1978. Structure, productivité et regime hydrique de phitocenoses alophiles sous climat méditerranéen.La Terre et la Vie 32:241–278.Google Scholar
  2. Bondesan, M. G., C. Castiglioni, G. Elmi, R. Gabbianelli, P. Marocco, P. Pirazzoli, andA. Tomasin. 1995. Coastal areas at risk from storm surges and sea-level rise in northeastern Italy.Journal of Coastal Research 11:1354–1379.Google Scholar
  3. Boorman, L. A., J. Hazelden, P. J. Loveland, J. G. Wells, andJ. E. Levasseur. 1994. Comparative relationships between primary productivity and organic and nutrient fluxes in four European salt marshes, p. 181–199.In W. G. Mitsch (eds.). Global Wetlands: Old World and New. Elsevier Science, Amsterdam, The Netherlands.Google Scholar
  4. Buth, C. andL. de Wolf. 1985. Decomposition ofSpartina anglica, Elytrigia pungens andHalimione portulacoides in a salt marsh in association with faunal and habitat influences.Vegetatio 62:337–355.CrossRefGoogle Scholar
  5. Caniglia, G., F. Chiesura Lorenzoni, L. Curti, andG. G. Lorenzoni. 1976. Variazioni della biomassa nella cenosi ad Arthrocnemum fruticosum del lago di Lesina (Foggia).Informatore Botanico Italiano 8:126–131.Google Scholar
  6. Caniglia, G., F. Chiesura Lorenzoni, L. Curti, G. G. Lorenzoni, S. Marchiori, S. Razzara, andN. Tornadore Marchiori. 1978. Variazioni di biomassa e ritmo antesico nelLimonietum venetum delle barene di Chioggia.Giornale Boanico Italiano 112:303–304.Google Scholar
  7. Caniglia, G., G. Contin, M. Fusco, andN. Anoè. 1997. Confronto su base vegetazionale tra due barene della laguna di Venezia.Fitosociologia 34:111–119.Google Scholar
  8. Carbognin, L., G. Gambolati, F. Marabini, G. Taroni, P. Teatini, andL. Tosi. 1996. Analisi del processo di subsidenza nell'area veneziana e sua simulazione con un modello tridimensionale non lineare. Progetto Sistema Lagunare Veneziano, Consiglio Nazionale delle Ricerche-Università di Venezia-Università di Padova, Venice, Italy.Google Scholar
  9. Curcó, A., C. Ibañez, J. W. Day, andN. Prat 2002. Netprimary production and decomposition of salt marshes of the Ebre Delta (Catalonia, Spain)Estuaries 25:xxx-xxx.CrossRefGoogle Scholar
  10. Day, J. W., C. Hall, W. Kemp, andA. Yanez-Arencibia. 1989. Estuarine Ecology. Wiley-Interscience, New York.Google Scholar
  11. Day, Jr.J. W., A. Rismondo, F. Scarton, D. Are, andG. Cecconi. 1998. Relative sea level rise and Venice lagoon wetlands.Journal of Coastal Conservation 4:27–34.Google Scholar
  12. Day, Jr.J. W., J. Rybczyk, F. Scarton, A. Rismondo, D. Are, andG. Cecconi. 1999. Soil accretionary dynamics, sea level rise and the survival of wetlands in Venice Lagoon: A field and modeling approach.Estuarine and Coastal Shelf Sciences 49:607–628.CrossRefGoogle Scholar
  13. Dijkema, K. S. (ed.). 1984. Salt marshes in Europe. Council of Europe. Nature and Environment Series no. 30. Council of Europe. Strasbourg.Google Scholar
  14. Favero, V., R. Parolini, andM. Scattolin. 1988. Morfologia Storica della Laguna di Venezia. Arsenale Editrice, Venice, Italy.Google Scholar
  15. Fazi, S. and L. Rossi. 1996. Decomposizione di detrito vegetale in acque salmastre: Perdita in peso vs. metabolismo della comunità, p. 435–438. Società Italiana di Ecologia, Atti del VII Congresso Nazionale, Napoli, Italy.Google Scholar
  16. Ferrari, I., R. Gerdol, andF. Piccoli. 1985. The halophylous vegetation in the Po Delta.Vegetatio 61:5–14.CrossRefGoogle Scholar
  17. Gehu, J. M., A. Scoppola, G. Caniglia, S. Marchiori, andJ. Gehu-Franck. 1984. Les systèmes vegetaux de la côte nordadriatique italienne, leur originalité a l'échelle européenne.Documents Phytosociologique 8:485–558.Google Scholar
  18. Gerdol, R. andF. Piccoli. 1984. Sand dune vegetation in the Po Delta.Ecologia Mediterranea 10:119–131.Google Scholar
  19. Groenendijk, A. M. 1984. Primary production of four dominant salt-marsh angiosperms in the SW Netherlands.Vegetatio 57: 143–152.CrossRefGoogle Scholar
  20. Groenendijk, A. M. andM. A. Vink-Lievaart. 1987. Primary production and biomass on a Dutch salt marsh: Emphasis on the below-ground component.Vegetatio 70:21–27.Google Scholar
  21. Hackney, C. T. andA. A. De La Cruz. 1980. In situ decomposition of roots and rhizomes of two tidal marsh plants.Ecology 61:226–231.CrossRefGoogle Scholar
  22. Ho, Y. B. 1979. Shoot development and production studies ofPhragmites australis in Scottish lochs.Hydrobiologia 64:215–222.CrossRefGoogle Scholar
  23. Hopkinson, C. S., J. G. Gosselink, andR. Parrondo. 1978. Aboveground production of seven marsh plant species in coastal Louisiana.Ecology 59:760–769.CrossRefGoogle Scholar
  24. Ibañez, C., J. W., Day, andD. Pont. 1999. Primary production and decomposition of wetlands of the Rhone Delta, France: Interactive impacts of human modifications and relative sea level rise.Journal of Coastal Research 15:717–731.Google Scholar
  25. Kominkovà, D., K. A. Kuehn, N. Busing, D. Steiner, andM. O. Gessner. 2000. Microbial mass. Growth and respiration associated with submerged litter ofPhragmites australis decomposing in a littoral reed stand of a large lake.Aquatic Microbial Ecology 22:271–282.CrossRefGoogle Scholar
  26. Lankford, R. 1976. Coastal lagoons of Mexico: Their origin and classification, p. 182–215.In M. L. Wiley (ed.). Estuarine Processes, Volume 2. Academic Press, New York.Google Scholar
  27. Lee, S. Y. 1990. Net aerial primary productivity, litter production and decomposition of the reedP. australis in a nature reserve in Hong Kong: Management implications.Marine Ecology Progress Series 66:161–173.CrossRefGoogle Scholar
  28. Linthurst, R. A. andR. J. Reimold. 1978a. Estimated net aerial primary productivity for selected estuarine angiosperms in Maine, Delaware and Georgia.Ecology 59:945–955.CrossRefGoogle Scholar
  29. Linthurst, R. A. andR. J. Reimold. 1978b. An evaluation of methods for estimating the net aerial primary productivity of estuarine angiosperms.Journal of Applied Ecology 15:919–931.CrossRefGoogle Scholar
  30. Mahall, B. E. andR. B. Park. 1976a The ecotone betweenSpartina foliosa andSalicornia virginica in salt marshes of northern San Francisco Bay. II. Soil water and salinity.Journal of Ecology 64:793–809.CrossRefGoogle Scholar
  31. Mahall, B. E. andR. B. Park. 1976b. The ecotone betweenSpartina foliosa andSalicornia virginica in salt marshes of northern San Francisco Bay. III. Soil aeration and tidal immersion.Journal of Ecology 64:811–819.CrossRefGoogle Scholar
  32. Mason, C. F. andR. J. Bryant. 1975. Production, nutrient content and decomposition ofPhragmites communis andTypha angustifolia.Journal of Ecology 63:71–95.CrossRefGoogle Scholar
  33. Mitsch, W. J. andJ. G. Gosselink. 1986. Wetlands. Van Nostrand Reinholdt, New York.Google Scholar
  34. Pennings, S. C. andR. M. Callaway. 1992. Salt marsh plant zonation: The relative importance of competition and physical factors.Ecology 73:681–690.CrossRefGoogle Scholar
  35. Pont, D., J. W. Day, Jr.P. Hensel, E. Franquet, F. Torre, P. Rioual, C. Ibañez, andE. Carlet. 2002. Response scenarios for the deltaic plain of the Rhône in the face of an acceleration in the rate of sea level rise with a special attention forSalicornia-type environments.Estuaries 25:xxx-xxx.CrossRefGoogle Scholar
  36. Raviolo, P. L. 1993. II laboratorio geotecnico. Edizioni Controls, Grafiche S. Felice, Milano, Italy.Google Scholar
  37. Rooth, J. E. andJ. C. Stevenson. 2000. Sediment deposition patterns inPhragmites australis communities: Implications for coastal areas threatened by rising sea-level.Wetlands Ecology and Management 8:173–183.CrossRefGoogle Scholar
  38. Sanchez-Arcilla, J., M. Jimenez, M. Stive, C. Ibañez, N. Pratt, J. W. Day, andM. Capobianco. 1996. Impacts of sea level rise on the Ebro Delta: A first approach.Ocean and Coastal Management 30:197–216.CrossRefGoogle Scholar
  39. Scarton, E., J. W. Day, A. Rismondo, G. Cecconi, andD. Are. 2000. Effects of an intertidal sediment fence on sediment elevation and vegetation distribution in a Venice (Italy) lagoon salt marsh.Ecological Engineering 16:223–233.CrossRefGoogle Scholar
  40. Scarton, F., A. Rismondo, andA. Manzoni. 1999. Accrescimento e produzione diPhragmites australis in laguna di Venezia.Lavori della Società Veneziana di Scienze Naturali 24:85–91.Google Scholar
  41. Schubauer, J. P. andC. S. Hopkinson. 1984. Above- and belowground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia.Limnology and Oceanography 29:1052–1065.CrossRefGoogle Scholar
  42. Sestini, G. 1992. Implication of climatic changes for the Po Delta and Venice Lagoon, p. 428–494.In L. Jeftic, J. D. Milliman, and G. Sestini (eds.). Climatic Changes and the Mediterranean, United Nations Environment Program, London, U. K.Google Scholar
  43. SISS (Società Italiana della Scienza del Suolo). 1989. Metodi Normalizzati di Analisi del Suolo. Società Italiana della Scienza del Suolo, Milan, Italy.Google Scholar
  44. Thormann, M. N. andS. E. Bayley. 1997. Decomposition along a moderate-rich fen-marsh peatland gradient in boreal Alberta, Canada.Wetlands 17:123–147.Google Scholar
  45. Wiegert, R. G. andF. C. Evans. 1964. Primary production and the disappearance of dead vegetation on an old field in southeastern Michigan.Ecology 45:49–63.CrossRefGoogle Scholar

Sources of Unpublished Materials

  1. Abrami, G. personal communication. Ecopiano Inc., Via Furlanetto 12, 35132 Padova, Italy.Google Scholar
  2. Curcó, A., C. Ibañez, and J. W. Day. 1996. Evaluation of primary production and decomposition.In Impact of Climatic Change on North-western Mediterranean Deltas. Final Workshop. Mediterranean Deltas Project. Unpublished Report to the European Community, D.G. XII.Google Scholar

Copyright information

© Estuarine Research Federation 2002

Authors and Affiliations

  • Francesco Scarton
    • 1
    Email author
  • John W. Day
    • 2
  • Andrea Rismondo
    • 3
  1. 1.Società per l'Ecologia delle Lagune e delle Coste scarlMargheraItaly
  2. 2.Department of Oceanography and Coastal Sciences and Coastal Ecology InstituteLouisiana State UniversityBaton Rouge
  3. 3.Società per l'Ecologia delle Lagune e delle Coste scarlMestreItaly

Personalised recommendations