, Volume 25, Issue 3, pp 309–324 | Cite as

Net primary production and decomposition of salt marshes of the Ebre delta (Catalonia, Spain)

  • Antoni CurcóEmail author
  • Carles Ibàñez
  • John W. Day
  • Narcís Prat


Net primary production was measured in three characteristic salt marshes of the Ebre delta: anArthrocnemum macrostachyum salt marsh,A. macrostachyum-Sarcocornia fruticosa mixed salt marsh andS. fruticosa salt marsh. Above-ground and belowground biomass were harvested every 3 mo for 1 yr. Surface litter was also collected from each plot. Aboveground biomass was estimated from an indirect non-destructive method, based on the relationship between standing biomass and height of the vegetation. Decomposition of aboveground and belowground components was studied by the disappearance of plant material from litter bags in theS. fruticosa plot. Net primary production (aboveground and belowground) was calculated using the Smalley method. Standing biomass, litter, and primary production increased as soil salinity decreased. The annual average total aboveground plus belowground biomass was 872 g m−2 in theA. macrostachyum marsh, 1,198 g m−2 in theA. macrostachyum-S. fruticosa mixed marsh, and 3,766 g m−2 in theS. fruticosa biomass (aboveground plus belowground) was 226, 445, and 1,094 g m−2, respectively. Total aboveground plus below-ground net primary production was 240, 1,172, and 1,531 g m−2 yr−1. There was an exponential loss of weight during decomposition. Woody stems and roots, the most recalcitrant material, had 70% and 83% of the original material remaining after one year. Only 20–22% of leafy stem weight remained after one year. When results from the Mediterranean are compared to other salt marshes dominated by shrubbyChenopodiaceae in Mediterranean-type climates, a number of similarities emerge. There are similar zonation patterns, with elevation and maximum aboveground biomass and primary production occurring in the middle marsh. This is probably because of stress produced by waterlogging in the low marsh and by hypersalinity in the upper marsh.


Salt Marsh Belowground Biomass Exponential Loss Recalcitrant Material Belowground Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adam, P. 1990. Saltmarsh Ecology. Cambridge Studies in Ecology. Cambridge University Press, Cambridge, U.K.Google Scholar
  2. Adams, J. B. andG. C. Bate. 1994. The effect of salinity and inundation on the estuarine macrophyteSarcocornia perennis (Mill.) A.J. Scott.Aquatic Botany 47:341–348.CrossRefGoogle Scholar
  3. Berger, A., J. J. Corre, andG. Heim. 1978. Structure, productivité et régime hydrique de phytocenoses halophiles sous climat méditerranéen.La Terre et la Vie 32:241–278.Google Scholar
  4. Buth, G. J. C. andL. De Wolf. 1985. Decomposition ofSpartina anglica, Elytrigia pungens andHalimione portulacoides in a Dutch salt marsh in association with faunal and habitat influences.Vegetatio 62:337–355.CrossRefGoogle Scholar
  5. Callaway, R. M., S. Jones, W. R. Ferren, Jr., andA. Parikh. 1990. Ecology of a Mediterranean-climate estuarine wetland at Carpinteria. California: Plant distributions and soil salinity in the upper marsh.Canadian Journal of Botany 68:1139–1146.Google Scholar
  6. Cameron, G. N. 1972. Analysis of insect trophic diversity in two salt marsh communities.Ecology 53:58–73.CrossRefGoogle Scholar
  7. Caniglia, G., F. Chiesura Lorenzoni, L. Curti, andG. G. Lorenzoni. 1976. Variazione della biomassa nella cenosi adArthrocnemum fruticosum del lago di Lesina (Foggia)Informatore Botanico Italino 8:126–131.Google Scholar
  8. Caniglia, G., F. Chiesura Lorenzoni, L. Curti, G. G. Lorenzoni, S. Marchiori, S. Razzara, andN. Tornadore Marchiori. 1978. Variazione di biomassa e ritmo antesico nelLimonietum venetum Pign. 1953 delle barene di Chioggia (Venezia).Giornale Boltanico Italiano 112:303–304.Google Scholar
  9. Castellanos, E. M., M. E. Figueroa, andA. J. Davy. 1994. Nucleation and facilitation in saltmarsh succession: Interactions betweenSpartina maritima andArthrocnemum pevenne.Journal of Ecology 82:239–248.CrossRefGoogle Scholar
  10. Chapman, V. J. 1977. Introduction, p. 1–29.In V. J. Chapman (ed.), Wet Coastal Ecosystems. Elsevier, Amsterdam.Google Scholar
  11. Clarke, L. D. andN. J. Hannon. 1967. The mangrove swamp and salt marsh communities of the Sydney district. I. Vegetation, soils and climate.Journal of Ecology 55:753–771.CrossRefGoogle Scholar
  12. Comín, F. A., M. Menéndez, andE. Forés. 1987. Salinidad y nutrientes en las lagunas costeras del Delta del Ebro.Limnetica 3:1–8.Google Scholar
  13. Day, J. W., C. Hall, W. Kemp, andA. Yâñez-Arancibia. 1989. Estuarine Ecology. Wiley-Interscience, New York.Google Scholar
  14. Dupuis, L. 1969. Dosage des carbonats dans les fractions granulométriques de quelques sols calcaires et dolomitiques.Annaire Agronomique de France 20:61–88.Google Scholar
  15. Eckardt, F. E. 1972. Dynamique de l'écosystème, stratégie des végétaux, et exchanges gazeux: Cas des enganes àSalicornia fruticosa.Oecologia Plantarum 7:333–345.Google Scholar
  16. Gabriel, B. C. andA. De la Cruz. 1974. Species composition, standing crop, and net primary production of a salt marsh community in Mississippi.Chesapeake Science 15:72–77.CrossRefGoogle Scholar
  17. Gallagher, J. L. andF. G. Plumley. 1979. Underground profiles and productivity in Atlantic coastal marshes.American Journal of Botary 66:156–161.CrossRefGoogle Scholar
  18. Groenendijk, A. M. 1984. Primary production of four dominant salt marsh angiosperms in the SW-Netherlands.Vegetatio 57: 143–152.CrossRefGoogle Scholar
  19. Groenendijk, A. M. andM. A. Vink-Lievaart. 1987. Primary production and biomass on a Dutch salt marsh: Emphasis on the below-ground component.Vegetatio 70:21–27.Google Scholar
  20. Hackney, C. T. andA. De La Cruz. 1980. In situ decomposition of roots and rhizomes of two tidal marsh plants.Ecology 61: 226–231.CrossRefGoogle Scholar
  21. Heurteaux, P. 1970. Rapports des eaux souterraines avec les sols halomorphes et la végétation en Camargue.La Terre et la Vie 4:467–510.Google Scholar
  22. Hopkinson, C. S., J. G. Gosselink, andR. T. Parrondo. 1978. Aboveground production of seven marsh plant species in coastal Louisiana.Ecology 59:760–769.CrossRefGoogle Scholar
  23. Hussey, A. andS. P. Long. 1982. Seasonal changes in weight of aboveground and below-ground vegetation and dead plant material in a salt marsh at Colne Point, Essex.Journal of Ecology 70:757–771.CrossRefGoogle Scholar
  24. Ibáñez, C., J. W. Day, Jr., andD. Pont. 1999. Primary production and decomposition in wetlands of the Rhone Delta, France: Interactive impacts of human modifications and relative sea level rise.Journal of Coastal Research 15:717–731.Google Scholar
  25. Jiménez, J. A. 1996. Evolución costera en el Delta del Ebro. Un proceso a diferentes escalas de tiempo y espacio. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain.Google Scholar
  26. Kartesz, J. T. 1994. A Synonymized Checklist of the Vascular Flora, of the United States, Canada and Greenland, 2nd edition, Timber Press, Portland.Google Scholar
  27. Linthurst, R. A. andR. J. Reimold. 1978. Estimated net aerial primary productivity for selected estuarine angiosperms in Maine, Delaware and Georgia.Ecology 59:945–955.CrossRefGoogle Scholar
  28. Long, S. P. andC. F. Mason. 1983. Saltmarsh Ecology. Blackie and Son Ltd., London.Google Scholar
  29. MacDonald, K. B. 1977. Plant and animal communities of Pacific Nortle American salt marshes, p. 167–191,In V. J. Chapman (ed.), Wet Coastal Ecosystems. Elsevier, Amsterdam.Google Scholar
  30. Mahall, B. E. andR. B. Park. 1976. The ecotone betweenSpartina foliosa Trin. andSalicornia virginica L. in salt marshes of northern San Francisco Bay. I. Biomass and production.Journal of Ecology 64:421–433.CrossRefGoogle Scholar
  31. Morris, J. T. andB. Haskin. 1990. A 5-year record of aerial primary production and stand characteristics ofSpartina alterniflora.Ecology 71:2209–2217.CrossRefGoogle Scholar
  32. Newell, S. Y., R. D. Fallon, andJ. D. Miller. 1989. Decomposition and microbial dynamics for standing, naturally positioned leaves of the salt marsh grassSpartina alterniflora.Marine Biology 101:471–481.CrossRefGoogle Scholar
  33. Onuf, C. P., M. L. Quammen, G. P. Shaffer, C. H. Peterson, J. W. Chapman, J. Cermak, andR. W. Holmes. 1978. Analysis of the values of central and southern California coastal wetlands, p. 189–199.In P. E. Greenson (ed.), Wetlands Functions and Values: the State of our Understanding. American Water Resources Association, Minneapolis, Minnesota.Google Scholar
  34. Page, A. L., R. H. Miller, andD. R. Keeney (eds.). 1982. Methods of Soil Analysis. American Society of Agronomy, Madison, Wisconsin.Google Scholar
  35. Peinado, M., F. Alcaraz, J. Delgadillo, M. De La Cruz, J. Alvarez, andJ. L. Aguirre. 1994. The coastal salt marshes of California and Baja California. Phytosociological typology and zonation.Vegetatio 110:55–66.Google Scholar
  36. Peinado, M., F. Alcaraz, J. L. Aguirre, J. Delgadillo, andJ. Alvarez. 1995. Similarity of zonation within Californian-Baja California and Mediterranean.The Southwestern Naturalist 40: 388–405.Google Scholar
  37. Pennings, S. C. andR. M. Callaway. 1992. Salt marsh zonation: The relative importance of competition and physical factors.Ecology 73:681–690.CrossRefGoogle Scholar
  38. Rioual, P., F. Torre, andD. Pont. andD. Pont 1996. Primary production of Salicornia-type vegetation within the Rhone Delta, p. 6.55–6.71.In Impact of Climatic Change on Northwestern Mediterranean Deltas, Volume 1. Final Report. LIM, Universitat Politècnica de Catalunya, Barcelona, Spain.Google Scholar
  39. Rivas-Martínez, S., M. Costa, S. Castroviejo, andE. Valdés. 1980 Vegetación de Doñana (Huelva, España).Lazaroa 2:5–190.Google Scholar
  40. Scarton, F. andA. Rismondo. 1996. Primary production and decomposition in the Po delta, p. 6.37–6.53.In Impact of Climatic Change on Northwestern Mediterranean Deltas, Volume 1. Final Report. LIM, Universitat Politècnica de Catalunya, Barcelona, SpainGoogle Scholar
  41. Scarton, F., A. Rismondo, andJ. W. Day. 1998. Above- and belowground primary production ofArthrocnemum fruticosum on a Venice Lagoon salt marsh.Bolletino del Museo, Civico di Storia Natural di Venezia 48:237–245.Google Scholar
  42. Scarton, E., J. W. Day, andA. Rismondo. 2002. Primary Producation and Decomposition ofSarcocornia fruticosa (L.) Scott andPhragmites australis Trin. Ex Steudel in the Po Delta, Italy.Estuaries 25:325–336.CrossRefGoogle Scholar
  43. Schuurman, J. J. andM. A. J. Goedewaagen. 1971. Methods for Examination of Roots Systems and Roots, Pudoc, Wageningen, Netherlands.Google Scholar
  44. Scott, J. C. 1977. Reinstatement and revision ofSalicorniaceae J. Agardh (Caryophyllales).Botanical Journal of the Linnean Society 75:357–364.CrossRefGoogle Scholar
  45. Sokal, R. R. andF. J. Rohlf. 1995. Biometry. W. H. Freeman and Company, New York.Google Scholar
  46. Tutin, T. G., V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters, andD. A. Webb. 1964–1980. Flora Europaea, 4 volumes. Cambridge University Press, Cambridge, U. K.Google Scholar
  47. Van der Valk, A. G., J. M. Rhymer, andH. R. Murkin. 1991. Flooding and the decomposition of litter of four emergent plant species in a prairie wetland.Wetlands 11:1–16.CrossRefGoogle Scholar
  48. West, R. C. 1977. Tidal salt-marsh and mangal formations of Middle and South America, p. 193–213.In V. J. Chapman (ed.), Wet Coastal Formations. Elsevier, Amsterdam.Google Scholar
  49. White, D. A. andJ. M. Trapani. 1982. Factors influencing the disappearance ofSpartina alterniflora from litter bags.Ecology 63:242–245.CrossRefGoogle Scholar
  50. Wieder, R. K. andG. E. Lang. 1982. A critique of the analytical methods used in examining decomposition data obtained from litter bags.Ecology 63:1636–1642.CrossRefGoogle Scholar
  51. Zedler, J. 1983. Freshwater impacts in normally hypersaline marshes.Estuaries 6:346–355.CrossRefGoogle Scholar
  52. Zedler, J., C. S. Norby, andB. E. Kus. 1992. The ecology of Tijuana estuary, California: A National Estuarine Research Reserve. National Oceanic and Atmospheric Administration Office of Coastal Resource Management, Sanctuaries and Reserves Division, Washington, D.C.Google Scholar
  53. Zedler, J., T. Winfield, andP. Williams. 1980 Salt marsh productivity with natural and altered tidal circulation.Oecologia (Berlin) 44:236–240.CrossRefGoogle Scholar

Source of Unpublished Materials

  1. Sánchex-Arcilla, A., J. A. Jiménez, and V. Gracia. unpublished data. Laboratori d'Enginyeria Marítima, Universitat Politècnica de Barcelona, Gran Capità s/n 08034 Barcelona, SpainGoogle Scholar

Copyright information

© Estuarine Research Federation 2002

Authors and Affiliations

  • Antoni Curcó
    • 1
    Email author
  • Carles Ibàñez
    • 2
  • John W. Day
    • 3
  • Narcís Prat
    • 2
  1. 1.Department of Vegetal Biology (Botany)University of BarcelonaBarcelonaSpain
  2. 2.Department of EcologyUniversity of BarcelonaBarcelonaSpain
  3. 3.Department of Oceanography and Coastal Sciences and Coastal Ecology InstituteLouisiana State UniversityBaton Rouge

Personalised recommendations