Estuaries

, Volume 26, Issue 2, pp 365–384

The responses of Patuxent River upper trophic levels to nutrient and trace element induced changes in the lower food web

Article

Abstract

As a result of human activities, coastal waters can be exposed to multiple stressors that affect primary producers and their interactions with higher trophic levels. Mesocosm experiments were conducted during spring and summer 1996–1998 to investigate the responses of natural populations of primary producers to multiple stressors and the potential for these responses to be transmitted to higher trophic levels (i.e., copepods, bivalves, anemones, and fish). The effects of two stressors, elevated nutrient and trace element loadings, were examined individually and in combination. Nutrient additions had a positive effect on biomass, productivity, and abundance of primary producers (Breitburg et al. 1999; Riedel et al. 2003). Growth or abundance of consumers increased with nutrient additions, but the magnitude of the response was reduced relative to that of their prey. Responses to trace element additions varied seasonally and among taxa. The responses of zooplankton and bivalves to stressor additions were affected by the biomass and changes in species composition of phytoplankton assemblages. The presence of fish predators did not alter zooplankton responses to stressor additions. These results suggest that the extent to which nutrient and trace element effects are transmitted from primary producers to higher trophic levels depends on the capacity of consumers to respond to stressor-induced changes in abundance and species composition of prey, on the absolute abundance of prey, and on the ability of predators to feed on alternative prey. The magnitude of the effects of stressors on estuarine food webs may depend on seasonal variability in species composition of phytoplankton assemblages, whether sensitive species dominate, and whether these species are important prey for secondary consumers. Because spatial and temporal patterns in nutrient and trace element loadings to the estuary can affect species composition of primary producers, it is critically important to examine the magnitude, timing, and spatial relationships of loadings of multiple stressors to coastal waters in order to understand the impacts of these stressors on higher trophic levels.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allen, E. A., P. E. Fell, M. A. Peck, J. A. Gieg, C. R. Guthke, andM. D. Newkirk. 1994. Gut contents of common mummichogs,Fundulus heterolitus L., in a restored impounded marsh and in natural reference marshes.Estuaries 7:462–471.CrossRefGoogle Scholar
  2. Arnott, G. H. andM. Ahsanullah. 1979. Acute toxicity of copper, cadmium and zinc to three species of marine copepod.Australian Journal of Marine and Freshwater Research 30:63–71.CrossRefGoogle Scholar
  3. Baird, D. andR. E. Ulanowicz. 1989. The seasonal dynamics of the Chesapeake Bay ecosystem.Ecological Monographs 59: 329–364.CrossRefGoogle Scholar
  4. Baldwin, B. S. andR. I. E. Newell. 1991. Omnivorous feeding by planktotrophic larvae of the eastern oysterCrassostrea virginica.Marine Ecology Progress Series 78:285–301.CrossRefGoogle Scholar
  5. Beers, J. R., G. L. Stewart, andK. D. Hoskins. 1977. Dynamics of micro-zooplankton populations treated with copper: Controlled ecosystem pollution experiment.Bulletin of Marine Science 27:66–79.Google Scholar
  6. Benjamini, Y. andY. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing.Journal of the Royal Statistical Society 57:289–300.Google Scholar
  7. Berggreen, U., B. Hansen, andT. Kiorboe. 1988. Food size spectra, ingestion and growth of the copepodAcartia tonsa during development: Implications for determination of copepod production.Marine Biology 78:285–301.Google Scholar
  8. Boynton, W. R., J. H. Garber, R. Summers, andW. M. Kemp. 1995. Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries.Estuaries 18:285–314.CrossRefGoogle Scholar
  9. Breitburg, D., J. G. Sanders, C. C. Gilmour, C. Hatfield, R. W. Osman, G. Riedel, S. P. Seitzinger, andK. G. Sellner. 1999. Variability in responses to nutrients and trace elements, and transmission of stressor effects through an estuarine food web.Limnology and Oceanography 44:837–863.CrossRefGoogle Scholar
  10. Caddy, J. F. andL. Garibaldi. 2000. Apparent changes in the trophic composition of world marine harvests: The perspective from the FAO capture database.Ocean and Coastal Management 43:615–655.CrossRefGoogle Scholar
  11. Cecchine, G. andT. W. Snell. 1999. Toxicant exposure increases threshold food levels in freshwater rotifers.Environmental Toxicology 14:523–530.CrossRefGoogle Scholar
  12. Cloern, J. E. 2001. Our evolving conceptual model of the coastal eutrophication problem.Marine Ecology Progress Series 210: 223–253.CrossRefGoogle Scholar
  13. Closs, G. P., S. R. Balcombe, andM. J. Shirley. 1999. Generalist predators, interaction strength and food-web stability.Advances in Ecological Research 28:93–126.CrossRefGoogle Scholar
  14. Crosby, M. P., R. I. E. Newell, andC. J. Langdon. 1990. Bacterial mediation in the utilization of carbon and nitrogen from detrital complexes byCrassostrea virginica.Limnology and Oceanography 35:625–639.Google Scholar
  15. Dauer, D. M. 2000. Relationships between benthic community condition, water quality, sediment quality, nutrient loads, and land use patterns in Chesapeake Bay.Estuaries 23:80–96.CrossRefGoogle Scholar
  16. D'Elia, C. F., J. G. Sanders, andW. R. Boynton. 1986. Nutrient enrichment studies in a coastal plain estuary: Phytoplankton growth in large-scale, continous cultures.Canadian Journal of Fisheries and Aquatic Sciences 43:397–406.CrossRefGoogle Scholar
  17. de Leiva Moreno, J. I., V. N. Agostini, J. F. Caddy, andF. Carocci. 2000. Is the pelagic-demersal ratio from fishery landings a useful proxy for nutrient availability? A preliminary data exploration for the semi-enclosed seas around Europe.ICES Journal of Marine Science 57:1091–1102.CrossRefGoogle Scholar
  18. Donat, J. R. andK. W. Bruland. 1995. Trace elements in the oceans, p. 247–281.In B. Salbu and E. Steinnes (eds.), Trace Elements in Natural Waters. CRC Press, Boca Raton, Florida.Google Scholar
  19. Durbin, E. G., A. G. Durbin, T. J. Smayda, andP. G. Verity. 1983. Food limitation of production by adultAcartia tonsa in Narragansett Bay, Rhode Island.Limnology and Oceanography 28:1199–1213.CrossRefGoogle Scholar
  20. Fenchel, T. 1988. Marine plankton food chains.Annual Review of Ecology and Systematics 19:19–38.CrossRefGoogle Scholar
  21. Fulton, R. S. 1984. Predation, production and the organization of an estuarine copepod community.Journal of Plankton Research 6:399–415.CrossRefGoogle Scholar
  22. Goldman, K. R., K. R. Tenore, andH. L. Stanley. 1973. Inorganic nitrogen removal from wastewater: Effect on phytoplankton growth in coastal marine waters.Science 180:955–956.CrossRefGoogle Scholar
  23. Hagy, J. D. 1996. Residence times and net ecosystem processes in the Patuxent River estuary, M.S. Thesis, University of Maryland, College Park, Maryland.Google Scholar
  24. Hall, Jr.L. W. andR. D. Anderson. 1995. The influence of salinity on the toxicity of various classes of chemicals to aquatic biota.Critical Reviews in Toxicology 25:281–346.CrossRefGoogle Scholar
  25. Horsted, S. J., T. G. Nielsen, B. Riemann, J. Pock-Steen, andP. K. Bjornsen. 1988. Regulation of zooplankton by suspension-feeding bivalves and fish in estuarine enclosures.Marine Ecology Progress Series 48:217–224.CrossRefGoogle Scholar
  26. Keller, A. A., P. H. Doering, S. P. Kelly, andB. K. Sullivan. 1990. Growth of juvenile Atlantic menhaden,Brevoortia tyrannus (Pisces: Clupeidae) in MERL mesocosms: Effects of eutrophication.Limnology and Oceanography 35:109–122.Google Scholar
  27. Kennedy, V. S. andJ. A. Mihursky. 1971. Upper temperature tolerances of some estuarine bivalves.Chesapeake Science 12: 193–204.CrossRefGoogle Scholar
  28. Kiørboe, T., F. Møhlenberg, andK. Hamburger. 1985. Bioenergetics of the planktonic copepodAcartia tonsa: Relation between feeding, egg production and respiration, and composition of specific dynamic action.Marine Ecology Progress Series 26:85–97.CrossRefGoogle Scholar
  29. Koeller, P. andT. Parsons. 1977. The growth of young salmonids (Oncorhynchus keta): Controlled ecosystem pollution experiment.Bulletin of Marine Science 27:114–118.Google Scholar
  30. Kusk, K. O. andS. Petersen. 1997. Acute and chronic toxicity of tributyltin and linear alkylbenzene sulfonate to the marine copepodAcartia tonsa.Environmental Toxicology and Chemistry 16:1629–1633.CrossRefGoogle Scholar
  31. Langdon, C. J. andR. I. E. Newell. 1990. Utilization of detritus and bacteria as food sources by two bivalve suspension-feeders, the oysterCrassostrea virginica and the musselGeukensia demissa.Marine Ecology Progress Series 58:299–310.CrossRefGoogle Scholar
  32. Lin, J. andA. J. Hines. 1994. Effects of suspended food availability on the feeding mode and burial depth of the Baltic on the feeding mode and burial depth of the Baltic clam.Macoma balthica.Oikos 69:28–36.CrossRefGoogle Scholar
  33. Lores, E. M. andJ. R. Pennock. 1999. Bioavailability and tro-phic transfer of humic-bound copper from bacteria to zooplankton.Marine Ecology Progress Series 187:67–75.CrossRefGoogle Scholar
  34. Mallin, M. A. andH. W. Paerl. 1994. Planktonic trophic transfer in an estuary: Seasonal, diel, and community structure effects.Ecology 75:2168–2184.CrossRefGoogle Scholar
  35. Malone, T. C., L. H. Crocker, S. E. Pike, andB. W. Wendler. 1988. Influences of river on the dynamics of phytoplankton production in a partially stratified estuary.Marine Ecology Progress Series 48:235–249.CrossRefGoogle Scholar
  36. Micheli, F. 1999. Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystems.Science 285: 1396–1398.CrossRefGoogle Scholar
  37. Newell, R. I. E. andC. J. Langdon. 1996. Mechanisms and physiology of larval and adult feeding, p. 185–230.In V. S. Kennedy, R. I. E. Newell, and A. F. Eble (eds.), The Eastern Oyster,Crassostrea virginica, Maryland Sea Grant, College Park, Maryland.Google Scholar
  38. Nixon, S. W. 1986. Nutrient dynamics and the productivity of marine coastal waters, p. 97–115.In R. Halwagy, D. Clayton, and M. Behbehani (eds.), Marine Environment and Pollution: Proceedings of the First Arabian Gulf Conference on Environment and Pollution, February 7–9, 1982. Kuwait University, Kuwait.Google Scholar
  39. Nixon, S. W. 1988. Physical energy inputs and the comparative ecology of lake and marine ecosystems.Limnology and Oceanography 33:1005–1025.Google Scholar
  40. Nixon, S. W., C. A. Oviatt, J. Frithsen, andB. Sullivan. 1986. Nutrients and the productivity of estuarine and coastal marine ecosystems.Journal of Limnological Society of Southern Africa 12:43–71.Google Scholar
  41. Ólafsson, E. B. 1989. Contrasting influences of suspension-feeding and deposit-feeding populations ofMacoma balthica on infaunal recruitment.Marine Ecology Progress Series 55:171–179.CrossRefGoogle Scholar
  42. Oviatt, C. A., P. H. Doering, B. L. Nowicki, andA. Zoppini. 1993. Net system production in coastal waters as a function of eutrophication, seasonality and benthic macrofaunal abundance.Estuaries 15:247–254.CrossRefGoogle Scholar
  43. Parrish, K. K. andD. F. Wilson. 1978. Fecundity studies onAcartia tonsa (Copepoda:Calanoida) in standardized culture.Marine Biology 46:65–81.CrossRefGoogle Scholar
  44. Parsons, T. R., Y. Maita, andC. M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford, U.K.Google Scholar
  45. Payne, C. D. andN. M. Price. 1999. Effects of cadmium toxicity on growth and elemental composition of marine phytoplankton.Journal of Phycology 36:293–302.CrossRefGoogle Scholar
  46. Paynter, K. T. andE. M. Burreson. 1991. Effects ofPerkinsus marinus infection in the eastern oyster,Crassostrea virginica: II. Disease development and impact on growth rate at different salinities.Journal of Shellfish Research 10:425–431.Google Scholar
  47. Pitta, P., A. Giannakourou, P. Divanach, andM. Kentouri. 1998. Planktonic food web in marine mesocosms in the Eastern Mediterranean: Bottom-up or top-down regulation?Hydrobiologia 363:97–105.CrossRefGoogle Scholar
  48. Polis G. A. andD. R. Strong. 1996. Food web complexity and community dynamics.American Naturalist 147:813–846.CrossRefGoogle Scholar
  49. Riedel, G. F., J. G. Sanders, andD. L. Breitburg. 2003. Seasonal variability in response of estuarine phytoplankton communities to stress: Linkages between toxic trace elements and nutrient enrichment.Estuaries 26:323–339.CrossRefGoogle Scholar
  50. Riedel, G. F., J. G. Sanders, andR. W. Osman. 1997. Biogeochemical control on the flux of trace elements from estuarine sediments: Water column oxygen concentrations and benthic infauna.Estuarine, Coastal and Shelf Science 44:23–38.CrossRefGoogle Scholar
  51. Riedel, G. F., S. A. Williams, G. S. Riedel, C. C. Gilmour, andJ. G. Sanders. 2000. Temporal and spatial patterns of trace elements in the Patuxent River: A whole watershed approach.Estuaries 23:521–535.CrossRefGoogle Scholar
  52. Sanders, J. G. 1979. Effects of arsenic speciation and phosphate concentration on arsenic inhibition ofSkeletonema costatum (Bacillariophyceae).Journal of Phycology 15:424–428.Google Scholar
  53. Sanders, J. G. andG. F. Riedel. 1993. Trace element transformation during the development of an estuarine algal bloom.Estuaries 16:521–532.CrossRefGoogle Scholar
  54. Strickland, J. D. H. and T. R. Parsons. 1972. A Practical Handbook of Seawater Analysis.Fisheries Research Board Canadian Bulletin 167.Google Scholar
  55. Sullivan, B. K. andP. V. Banzon. 1990. Food limitation and benthic regulation of populations of the copepodAcartia hudsonica Pinhey in nutrient-limited and nutrient-enriched systems.Limnology and Oceanography 35:1618–1631.Google Scholar
  56. Sullivan, B. K., E. Buskey, D. C. Miller, andP. J. Ritacco. 1983. Effects of copper and cadmium on growth, swimming and predator avoidance inEurytemora affinis (Copepod).Marine Biology 77:299–306.CrossRefGoogle Scholar
  57. Thomas, W. H. andD. L. R. Seibert. 1977. Effects of copper on the dominance and the diversity of algae: Controlled ecosystem pollution experiment.Bulletin of Marine Science 27:23–33.Google Scholar
  58. Toudal, K. andH. U. Riisgard. 1987. Acute and sublethal effects of cadmium on ingestion, egg production and life-cycle development in the copepodAcartia tonsa.Marine Ecology Progress Series 37:141–146.CrossRefGoogle Scholar
  59. Utermohl, H. 1958. Zur vervollkommung der quantitativen phytoplankton-methodik.Mitteilungen, Internationale Vereinigung fuer Theoretische und Angewandte Limnologie 9:1–38.Google Scholar
  60. Wang, W.-X. andR. C. H. Del. 2001. Effects of major nutrient additions on metal uptake in phytoplankton.Environmental Pollution 111:233–240.CrossRefGoogle Scholar
  61. White, J. R. andM. R. Roman. 1992. Egg production by the calanoid copepodAcartia tonsa in the mesohaline Chesapeake Bay: The importance of food resources and temperature.Marine Ecology Progress Series 86:239–249.CrossRefGoogle Scholar
  62. Wiegner, T. N., S. P. Seitzinger, D. L. Breitburg, andJ. G. Sanders. 2003. The effects of multiple stressors on the balance between autotrophic and heterotrophic processes in an estuarine system.Estuaries 26:xxx-xxx.CrossRefGoogle Scholar
  63. Zarooglian, G. E. andG. Morrison. 1981. Effect of cadmium body burdens in adultCrassostrea virginica on fecundity and viability of larvae.Bulletin of Environmental Contamination and Toxicology 27:344–348.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2003

Authors and Affiliations

  • M. H. Bundy
    • 1
  • D. L. Breitburg
    • 1
  • K. G. Sellner
    • 2
  1. 1.Estuarine Research CenterAcademy of Natural SciencesLeonard
  2. 2.Chesapeake Research ConsortiumEdgewater

Personalised recommendations