, Volume 28, Issue 3, pp 447–461 | Cite as

Spatial and seasonal variability in elemental content, δ13C, and δ15N ofThalassia testudinum from South Florida and its implications for ecosystem studies

  • James W. Fourqurean
  • Susie P. Escorcia
  • William T. Anderson
  • Joseph C. Zieman


Elemental and isotopic composition of leaves of the seagrassThalassia testudinum was highly variable across the 10,000 km2 and 8 years of this study. The data reported herein expand the reported range in carbon:nitrogen (C:N) and carbon:phosphorus (C:P) ratios and δ13C and δ15N values reported for this species worldwide; 13.2–38.6 for C:N and 411–2,041 for C:P. The 981 determinations in this study generated a range of −13.5‰ to −5.2‰ for δ13C and −4.3‰ to 9.4‰ for δ15N. The elemental and isotope ratios displayed marked seasonality, and the seasonal patterns could be described with a simple sine wave model. C:N, C:P, δ13C, and δ15N values all had maxima in the summer and minima in the winter. Spatial patterns in the summer maxima of these quantities suggest there are large differences in the relative availability of N and P across the study area and that there are differences in the processing and the isotopic composition of C and N. This work calls into question the interpretation of studies about nutrient cycling and food webs in estuaries based on few samples collected at one time, since we document natural variability greater than the signal often used to imply changes in the structure or function of ecosystems. The data and patterns presented in this paper make it clear that there is no threshold δ15N value for marine plants that can be used as an unambiguous indicator of human sewage pollution without a thorough understanding of local temporal and spatial variability.


Dissolve Inorganic Carbon Dissolve Inorganic Nitrogen Marine Ecology Progress Series Short Shoot Thalassia Testudinum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literture Cited

  1. Abal, E. G., N. Loneragan, P. Bowen, C. J. Perry, J. W. Udy, andW. C. Dennison. 1994. Physiological and morphological responses of the seagrassZostera capricorni Ascher. to light intensity.Journal of Experimental Marine Biology and Ecology 178:113–129.CrossRefGoogle Scholar
  2. Ambler, J. W., J. Alcala-Herrera, andR. Burke. 1994. Trophic roles of particle feeders and detritus in a mangrove island prop root ecosystem.Hydrobiologia 292/293:437–446.CrossRefGoogle Scholar
  3. Anderson, W. T. andJ. W. Fourqurean. 2003. Intra-and interannual variability in seagrass carbon and nitrogen stable isotopes from south Florida, a preliminary study.Organic Geochemistry 34:185–194.CrossRefGoogle Scholar
  4. Atkinson, M. J. andS. V. Smith. 1983. C:N:P ratios of benthic marine plants.Limnology and Oceanography 28:568–574.Google Scholar
  5. Benedict, C. R. andJ. R. Scott. 1976 Photosynthetic carbon metabolism of a marine grass.Plant Physiology 57:876–880.Google Scholar
  6. Benedict, C. R., W. W. L. Wong, andJ. H. H. Wong. 1980. Fractionation of the stable isotopes of inorganic carbon by seagrasses.Plant Physiology 65:512–517.Google Scholar
  7. Boon, P. I. andS. E. Bunn. 1994. Variations in the stable isotope composition of aquatic plants and their implications for food web analysis.Aquatic Botany 48:99–108.CrossRefGoogle Scholar
  8. Boyce, M. C., P. Lavery, I. J. Bennett, andP. Horowitz. 2001. Spatial variation in the δ13C signature ofRuppia megacarpa (Mason) in coastal lagoons of southwestern Australia and its implication for isotopic studies.Aquatic Botany 71:83–92.CrossRefGoogle Scholar
  9. Boyer, J. N. andR. D. Jones. 2002. View from the bridge: External and internal forces affecting the ambient water quality of the Florida Keys National Marine Sanctuary, p. 609–628.In J. W. Porter and K. G. Porter (eds.), The Everglades, Florida Bay, and Coral Reefs of the Florida Keys. CRC Press, Boca Raton, Florida.Google Scholar
  10. Bunn, S. E., N. R. Loneragan, andM. A. Kempster. 1995. Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: Implications for food-web studies using multiple stable isotopes.Limnology and Oceanography 40:622–625.CrossRefGoogle Scholar
  11. Burdige, D. J. andR. C. Zimmerman. 2002. Impact of sea grass density on carbonate dissolution in Bahamian sediments.Limnology and Oceanography 47:1751–1763.CrossRefGoogle Scholar
  12. Cloern, J. E., E. A. Canuel, andD. Harris. 2002. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system.Limnology and Oceanography 47:713–729.CrossRefGoogle Scholar
  13. Cooper, L. W. andM. J. DeNiro. 1989. Stable carbon isotope variability in the seagrassPosidonia oceanica: Evidence for light intensity effects.Marine Ecology Progress Series 50:225–229.CrossRefGoogle Scholar
  14. Corbett, D. R., J. Chanton, W. Burnett, K. Dillon, C. Rutkowski, andJ. W. Fourqurean. 1999. Patterns of groundwater discharge into Florida Bay.Limnology and Oceanography 44:1045–1055.CrossRefGoogle Scholar
  15. de Kanel, J. andJ. W. Morse. 1978. The chemistry of orthophophate uptake from seawater onto calcite and aragonite.Geochimica et Cosmochimica Acta 42:1335–1340.CrossRefGoogle Scholar
  16. Duarte, C. M. 1990. Seagrass nutrient content.Marine Ecology Progress Series 67:201–207.CrossRefGoogle Scholar
  17. Durako, M. J. andM. O. Hall. 1992. Effect of light on the stable carbon isotope composition of the seagrassThalassia testudinum.Marine Ecology Progress Series 86:99–101.CrossRefGoogle Scholar
  18. Farquhar, G. D., J. R. Ehleringer, andK. T. Hubick. 1989. Carbon isotope discrimination and photosynthesis.Annual Review of Plant Physiology and Plant Molecular Biology 40:503–537.CrossRefGoogle Scholar
  19. Ferdie, M. andJ. W. Fourqurean. 2004. Responses of seagrass communities to fertilization along a gradient of relative availability of nitrogen and phosphorus in a carbonate environment.Limnology and Oceanography 49:2082–2094.CrossRefGoogle Scholar
  20. Fleming, M., G. Lin, andL. S. L. Sternberg. 1990. Influence of mangrove detritus in an estuarine ecosystem.Bulletin of Marine Science 47:663–669.Google Scholar
  21. Fourqurean, J. W., T. O. Moore, B. Fry, andJ. T. Hollibaugh. 1997. Spatial and temporal variation in C:N:P ratios, δ15N, and δ13C of eelgrassZostera marina as indicators of ecosystem processes, Tomales Bay, California, USA.Marine Ecology Progress Series 157:147–157.CrossRefGoogle Scholar
  22. Fourqurean, J. W. andL. M. Rutten. 2003. Competing goals of spatial and temporal resolution: Monitoring seagrass communities on a regional scale, p. 257–288.In D. E. Busch and J. C. Trexler (eds.), Monitoring Ecosystem Initiatives: Interdisciplinary Approaches for Evaluating Ecoregional Initiatives. Island Press, Washington, D.C.Google Scholar
  23. Fourqurean, J. W., A. W. Willsie, C. D. Rose, andL. M. Rutten. 2001. Spatial and temporal pattern in seagrass community composition and productivity in south Florida.Marine Biology 138:341–354.CrossRefGoogle Scholar
  24. Fourqurean, J. W. andJ. C. Zieman. 1991. Photosynthesis, respiration and whole plant carbon budget of the seagrassThalassia testudinum.Marine Ecology Progress Series 69:161–170.CrossRefGoogle Scholar
  25. Fourqurean, J. W. andJ. C. Zieman. 2002. Seagrass nutrient content reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys, USA.Biogeochemistry 61:229–245.CrossRefGoogle Scholar
  26. Fourqurean, J. W., J. C. Zieman, andG. V. N. Powell. 1992. Phosphorus limitation of primary production in Florida Bay: Evidence from the C:N:P ratios of the dominant seagrassThalassia testudinum.Limnology and Oceanography 37:162–171.Google Scholar
  27. Francois, R., M. A. Altabet, R. Goericke, D. L. McCorkle, C. Brunet, andA. Poisson. 1993. Changes in the δ15C of surface-water particulate organic matter across the subtropical convergences in the SW Indian Ocean.Global Biogeochemical Cycles 7:627–644.CrossRefGoogle Scholar
  28. Frankovich, T. A. andJ. W. Fourqurean. 1997. Seagrass epiphyte loads along a nutrient availability gradient, Florida Bay USA.Marine Ecology Progress Series 159:37–50.CrossRefGoogle Scholar
  29. Fry, B., S. A. Macko, andJ. C. Zieman. 1987. Review of stable isotopic investigations of food webs in seagrass meadows, p. 189–209.In M. J. Durako, R. C. Phillips, and R. R. Lewis, III (eds.), Proceedings of the Symposium on Subtropical-tropical Seagrasses of the Southeastern United States. Florida Marine Research Publications, No. 42. Florida Department of Natural Resources, St. Petersburg, Florida.Google Scholar
  30. Fry, B. andP. L. Parker. 1979. Animal diet in Texas seagrass meadows: d13C evidence for the importance of benthic plants.Estuarine and Coastal Marine Science 8:499–509.CrossRefGoogle Scholar
  31. Grice, A. M., N. R. Loneragan, andW. C. Dennison. 1996. Light intensity and the interactions between physiology, morphology and stable isotope ratios in five species of seagrass.Journal of Experimental Marine Biology and Ecology 195:91–110.CrossRefGoogle Scholar
  32. Handley, L. L. andC. M. Scrimgeour. 1997. Terrestrial plant ecology and15N natural abundance: The present limits to interpretation for uncultivated systems with original data from a Scottish old field.Advances in Ecological Research 27:133–212.CrossRefGoogle Scholar
  33. Harrigan, P., J. C. Zieman, andS. A. Macko. 1989. The base of nutritional support for the gray snapper (Lutjanus griseus): An evaluation based on a combined stomach content and stable isotope analysis.Bulletin of Marine Science 44:65–77.Google Scholar
  34. Haug, G. H., T. F. Pedersen, D. M. Sigman, S. E. Calvert, B. Nielsen, andL. C. Peterson. 1998. Glacial/interglacial variations in production and nitrogen fixation in the Caiaco Basin during the last 580 kyr.Paleoceanography 13:427–432.CrossRefGoogle Scholar
  35. Hemminga, M. A. andM. A. Mateo. 1996. Stable carbon isotopes is seagrasses: Variability in ratios and use in ecological studies.Marine Ecology Progress Series 140:285–298.CrossRefGoogle Scholar
  36. Hemminga, M. A., F. J. Slim, J. Kazungu, G. M. Ganssen, J. Nieuwewnhuize, andN. M. Kruyt. 1994. Carbon outwelling from a mangrove forest with adjacent seagrass beds and coral reefs (Gazi Bay, Kenya).Marine Ecology Progress Series 106:291–301.CrossRefGoogle Scholar
  37. Jensen, H. S., K. J. McGlathery, R. Marino, andR. W. Howarth. 1998. Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds.Limnology and Oceanography 43:799–810.CrossRefGoogle Scholar
  38. Klein, C. J. I. andS. P. J. Orlando. 1994. A spatial framework for water-quality management in the Florida Keys National Marine Sanctuary.Bulletin of Marine Science 54:1036–1044.Google Scholar
  39. Lapointe, B. E., J. D. O’Connell, andG. S. Garrett 1990. Nutrient couplings between on-site sewage disposal systems, groundwaters, and nearshore surface waters of the Florida Keys.Biogeochemistry 10:289–307.CrossRefGoogle Scholar
  40. Laws, E. A., B. N. Popp, R. R. Bidigare, M. C. Kennicutt, andS. A. Macko. 1995. Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: Theoretical considerations and experimental results.Geochimica et Cosmochimica Acta 59:1131–1138.CrossRefGoogle Scholar
  41. Lin, G., T. Banks, andL. O. Sternberg. 1991. Variation of δ15C values for the seagrassThalassia testudinum and its relation to mangrove carbon.Aquatic Botany 40:333–341.CrossRefGoogle Scholar
  42. Macko, S. A. 1981. Stable nitrogen isotope ratios as tracers of organic geochemical processes. Ph.D. Dissertation, University of Texas, Austin, Texas.Google Scholar
  43. McClelland, J. W. andI. Valiela. 1998a. Changes in food web structure under the influence of increased anthropogenic nitrogen inputs to estuaries.Marine Ecology Progress Series 168: 259–271.CrossRefGoogle Scholar
  44. McClelland, J. W. andI. Valiela. 1998b. Linking nitrogen in estuarine producers to land-derived sources.Limnology and Oceanography 43:577–585.CrossRefGoogle Scholar
  45. McClelland, J. W., I. Valiela, andR. H. Hichemer. 1997. Nitrogen-stable isotope signatures in estuarine food webs: A record of increasing urbanization in coastal watersheds.Limnology and Oceanography 42:930–937.CrossRefGoogle Scholar
  46. McMillan, C., P. L. Parker, andB. Fry. 1980.15C/12C ratios in seagrasses.Aquatic Botany 9:237–249.CrossRefGoogle Scholar
  47. Meyers, P. 1997. Organic geochemical records of paleoceanographic, paleolimnologic, and paleoclimatic records.Organic Geochemistry 27:213–250.CrossRefGoogle Scholar
  48. Miller, M. W. andR. D. Sluka. 1999. Patterns of seagrass and sediment nutrient distribution suggest anthropogenic nutrient enrichment in Laamu Atoll, Republic of maldives.Marine Pollution Bulletin 38:1152–1156.CrossRefGoogle Scholar
  49. O’Reilly, C. M., R. E. Hecky, A. S. Cohen, andP.-D. Plisnier. 2002. Interpreting stable isotopes in food webs: Recognizing the role of time averaging at different trophic levels.Limnology and Oceanography 47:306–309.CrossRefGoogle Scholar
  50. Orem, W. H., C. W. Holmes, C. Kendall, H. E. Lerch, A. L. Bates, S. R. Silva, A. Boylan, M. Corum, M. Marot, andC. Hedgeman. 1999. Geochemistry of Florida Bay sediments: Nutrient history at five sites in eastern and central Florida Bay.Journal of Coastal Research 15:1055–1071.Google Scholar
  51. Ostrom, N. E., M. S. A. D. Deibel, andR. J. Thompson. 1997. Seasonal variation in stable carbon and nitrogen biogeochemistry of a coastal cold ocean environment.Geochimica et Cosmochimica Acta 61:2929–2942.CrossRefGoogle Scholar
  52. Paerl, H. W. 1997. Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and ground-water as “new” nitrogen and other nutrient sources.Limnology and Oceanography 42:1154–1165.CrossRefGoogle Scholar
  53. Peterson, B. J. 1999. Stable isotopes as tracers of organic matter input and transfer in benthic food webs: A review.Acta Oecologia 20:479–487.CrossRefGoogle Scholar
  54. Peterson, B. J. andJ. W. Fourqurean. 2001. Large-scale patterns in seagrass (Thalassia testudinum) demographics in south Florida.Limnology and Oceanography 46:1077–1090.CrossRefGoogle Scholar
  55. Peterson, B. J., R. W. Howarth, andR. H. Garritt. 1985. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs.Science 227:1361–1363.CrossRefGoogle Scholar
  56. Rudnick, D. T., Z. Chen, D. L. Childers, J. N. Boyer, andT. D. I. Fontaine. 1999. Phosphorus and nitrogen inputs to Florida Bay: The importance of the Everglades watershed.Estuaries 22:398–416.CrossRefGoogle Scholar
  57. Schelske, C. andD. Hodell. 1991. Recent changes in productivity and climate of Lake Ontario detected by stable isotope analysis of sediments.Limnology and Oceanography 36:961–975.CrossRefGoogle Scholar
  58. Schomer, N. S. and R. D. Drew. 1982. An ecological characterization of the lower Everglades, Florida Bay and the Florida Keys. U.S. Fish and Wildlife Service, Office of Biological Services, FWS/OBS-82/58.1. Washington, D.C.Google Scholar
  59. Schwamborn, R. andM. M. Criales. 2000. Feeding strategy and daily ration of juvenile pink shrimp (Farfantepenaeus duorarum) in a south Florida seagrass beds.Marine Biology 137:139–147.CrossRefGoogle Scholar
  60. Short, F. T., W. C. Dennison, andD. G. Capone. 1990. Phosphorus-limited growth of the tropical seagrassSyringodium filiforme in carbonate sediments.Marine Ecology Progress Series 62: 169–174.CrossRefGoogle Scholar
  61. Stephenson, R. L., F. C. Tan, andK. H. Mann. 1984. Stable carbon isotope variability in marine macrophytes and its implications in food web studies.Marine Biology 81:223–230.CrossRefGoogle Scholar
  62. Surge, D. M. andK. C. Lohmann. 2002. Temporal and spatial differences in salinity and water chemistry in SW Florida estuaries: Effects of human-impacted watersheds.Estuaries 25:393–408.CrossRefGoogle Scholar
  63. Swart, P. K., R. M. Price, andL. Greer. 2001. The relationship between stable isotopic ratios (O, H, and C) and salinity in waters and corals from environments in south Florida: Implications for reading the paleoenvironmental record.Bulletins of American Paleontology 361:17–29.Google Scholar
  64. Teranes, J. L. andS. M. Bernasconi. 2000. The record of nitrate utilization and productivity limitation provided by δ15N values in lake organic matter—A study of sediment trap and core sediments from Baldeggersee, Switzerland.Limnology and Oceanography 45:801–813.CrossRefGoogle Scholar
  65. Tilman, D., J. Fargione, Wolff, C. D’Antonio, A. Dobson, R. Howarth, D. Schindler, W. H. Schlesinger, D. Simberloff, andD. Swackhammer. 2001. Forecasting agriculturally driven global environmental change.Science 292:281–284.CrossRefGoogle Scholar
  66. Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, andD. G. Tilman. 1997. Human alteration of the global nitrogen cycle: Sources and consequences.Ecological Applications 7:737–750.Google Scholar
  67. Zieman, J. C., S. A. Macko, andA. L. Mills. 1984. Role of seagrasses and mangroves in estuarine food webs: Temporal and spatial changes in stable isotope composition and amino acid content during decomposition.Bulletin of Marine Science 35: 380–392.Google Scholar

Sources of Unpublished Materials

  1. Boyer, J. Unpublished data. Southeast Environmental Research Center, Florida International University, Miami, Florida 33199.Google Scholar

Copyright information

© Estuarine Research Federation 2005

Authors and Affiliations

  • James W. Fourqurean
    • 1
  • Susie P. Escorcia
    • 1
  • William T. Anderson
    • 2
  • Joseph C. Zieman
    • 3
  1. 1.Department of Biological Sciences and Southeast Environmental Research CenterFlorida International UniversityMiami
  2. 2.Department of Earth Sciences and Southeast Environmental Research CenterFlorida International UniversityMiami
  3. 3.Department of Environmental SciencesUniversity of VirginiaCharlottesville

Personalised recommendations