Advertisement

Estuaries

, Volume 28, Issue 3, pp 422–434 | Cite as

Experimental nutrient enrichment causes complex changes in seagrass, microalgae, and macroalgae community structure in Florida Bay

  • Anna R. Armitage
  • Thomas A. Frankovich
  • Kenneth L. Heck
  • James W. Fourqurean
Article

Abstract

We examined the spatial extent of nitrogen (N) and phosphorus (P) limitation of each of the major benthic primary producer groups in Florida Bay (seagrass, epiphytes, macroalgae, and benthic microalgae) and characterized the shifts in primary producer community composition following nutrient enrichment. We established 24 permanent 0.25-m2 study plots at each of six sites across. Florida Bay and added N and P to the sediments in a factorial design for 18 mo. Tissue nutrient content of the turtlegrassThalassia testudinum revealed a spatial pattern in P limitation, from severe limitation in the eastern bay (N:P>96:1), moderate limitation in two intermediate sites (approximately 63:1), and balanced with N availability in the western bay (approximately 31:1). P addition increasedT. testudinum cover by 50–75% and short-shoot productivity by up to 100%, but only at the severely P-limited sites. At sites with an ambient N:P ratio suggesting moderate P limitation, few seagrass responses to nutrients occurred. Where ambientT. testudinum tissue N:P ratios indicated N and P availability was balanced, seagrass was not affected by nutrient addition but was strongly influenced by disturbance (currents, erosion). Macroalgal and epiphytic and benthic microalgal biomass were variable between sites and treatments. In general, there was no algal overgrowth of the seagrass in enriched conditions, possibly due to the strength of seasonal influences on algal biomass or regulation by grazers., N addition had little effect on any benthic primary producers throughout the bay. The Florida Bay benthic primary producer community was P limited, but P-induced alterations of community structure were not uniform among primary producers or across Florida Bay and did not always agree with expected patterns of nutrient limitation based on stoichiometric predictions from field assays ofT. testudinum tissue, N:P ratios.

Keywords

Macroalgae Nutrient Enrichment Nutrient Treatment Marine Ecology Progress Series Experimental Marine Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Admiraal, W. 1984. The ecology of sediment-inhabiting diatoms.Progress on Phycological Research 3:269–322.Google Scholar
  2. Agawin, N. S. R., C. M. Duarte, andM. D. Fortes., 1996. Nutrient limitation of Philippine seagrasses (Cape Bolinao, NW Philippines): In situ experimental evidence.Marine Ecology Progress Series 138:233–243.CrossRefGoogle Scholar
  3. Atkinson, M. J. andS. V. Smith. 1983. C:N:P ratios of benthic marine plants.Limnology and Oceanography 28:568–574.Google Scholar
  4. Bargali, K. 1997. Role of light, moisture, and nutrient availability in replacement ofQuercus leucotrichophora byPinus roxburghii in Central Himalaya.Journal of Tropical Forest Science 10: 262–270.Google Scholar
  5. Borum, J. andK. Sand-Jensen. 1996. Is total primary production in shallow coastal marine waters stimulated by nitrogen loading?Oikos 76:406–410.CrossRefGoogle Scholar
  6. Boyer, K. E., P. Fong, A. R. Armitage, andR. A. Cohen. 2004. Elevated nutrient content of tropical macroalgae increases rates of herbivory in coral, seagrass, and mangrove habitats.Coral Reefs 23:530–538.Google Scholar
  7. Brand, L. E. 2002. The transport of terrestrial nutrients to South Florida coastal waters, p. 361–411.In J. W. Porter and K. G. Porter (eds.), The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook. CRC Press, Boca Raton, Florida.Google Scholar
  8. Burdige, D. J. andR. C. Zimmerman. 2002. Impact of sea grass density on carbonate dissolution in Bahamian sediments.Limnology and Oceanography 47:1751–1763.CrossRefGoogle Scholar
  9. Cardoso, P. G., M. A. Pardal, A. I. Lillebø, S. M. Ferreira, D. Raffaelli, andJ. C. Marques. 2004. Dynamic changes in seagrass assemblages under eutrophication and implications for recovery.Journal of Experimental Marine Biology and Ecology 302: 233–248.CrossRefGoogle Scholar
  10. Carrick, H. J. andR. L. Lowe. 1988. Response of Lake Michigan benthic algae to in situ enrichment with silicon, nitrogen, and phosphorus.Canadian Journal of Fisheries and Aquatic Sciences 45:271–279.Google Scholar
  11. Chambers, R. M., J. W. Fourqurean, S. A. Macko, andR. Hoppenot. 2001. Biogeochemical effects of iron availability on primary producers in a shallow marine carbonate environment.Limnology and Oceanography 46:1278–1286.CrossRefGoogle Scholar
  12. Collado-Vides, L., J. González-González, andM. Gold-Morgan. 1994. A descriptive approach to the floating masses of algae of a Mexican Caribbean coastal lagoon.Botanica Marina 37:391–396.CrossRefGoogle Scholar
  13. Craft, C. B. andC. J. Richardson. 1997. Relationships between soil nutrients and plant species composition in Everglades peatlands.Journal of Environmental Quality 26:224–232.CrossRefGoogle Scholar
  14. Duarte, C. M. 1990. Seagrass nutrient content.Marine Ecology Progress Series 67:201–207.CrossRefGoogle Scholar
  15. Duarte, C. M. 1995. Submerged aquatic vegetation in relation to different nutrient regimes.Ophelia 41:87–112.Google Scholar
  16. Duarte, C. M., M. Merino, andM. Gallegos. 1995. Evidence of iron deficiency in seagrasses growing above carbonate sediments.Limnology and Oceanography 40:1153–1158.CrossRefGoogle Scholar
  17. Erftemeijer, P. L. A., J. Stapel, M. J. E. Smekens., andW. M. E. Drossaert. 1994. The limited effect of in situ phosphorus and nitrogen additions to seagrass beds on carbonate and terrigenous sediments in South Sulawesi, Indonesia.Journal of Experimental Marine Biology and Ecology 182:123–140.CrossRefGoogle Scholar
  18. Ferdie, M. andJ. W. Fourqurean. 2004. Responses of seagrass communities to fertilization along a gradient of relative availability of nitrogen and phosphorus in a carbonate environment.Limnology and Oceanography 49:2082–2094.CrossRefGoogle Scholar
  19. Fong, P., K. E. Boyer, K. Kamer, andK. A. Boyle. 2003. Influence of initial tissue nutrient status of tropical marine algae on response to nitrogen and phosphorus additions.Marine Ecology Progress Series 262:111–123.CrossRefGoogle Scholar
  20. Fourqurean, J. W., M. J. Durako, M. O. Hall, andL. N. Hefty. 2002. Seagrass distribution in South Florida: A multi-agency coordinated monitoring program, p. 497–522.In J. W. Porter and K. G. Porter (eds.) The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook. CRC Press, Boca Raton, Florida.Google Scholar
  21. Fourqurean, J. W., R. D. Jones andJ. C. Zieman. 1993. Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, USA: Inferences from spatial distributions.Estuarine, Coastal and Shelf Science 36:295–314.CrossRefGoogle Scholar
  22. Fourqurean, J. W., G. V. N. Powell, W. J. Kenworthy andJ. C. Zieman. 1995. The effects of long-term manipulation of nutrient supply on competition between the seagrassesThalassia testudinum andHalodule wrightii in Florida Bay.Oikos 72: 349–358.CrossRefGoogle Scholar
  23. Fourqurean, J. W. andJ. C. Zieman. 2002. Nutrient content of the seagrassThalassia testudinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys USA.Biogeochemistry 61:229–245.CrossRefGoogle Scholar
  24. Fourqurean, J. W., J. C. Zieman, andG. V. N. Powell. 1992. Phosphorus limitation of primary production in Florida Bay: Evidence from C:N:P ratios of the dominant seagrassThalassia testudinum.Limnology and Oceanography 37:162–171.CrossRefGoogle Scholar
  25. Frankovich, T. A. andJ. C. Zieman. 1994. Total epiphyte and epiphytic carbonate production ofThalassia testudinum across Florida Bay.Bulletin of Marine Science 54:679–695.Google Scholar
  26. Frankovich, T. A. andJ. C. Zieman. 2005. Grazer dynamics, nutrients, and seagrass leaf controls on epiphyte loading.Estuaries 28:41–52.Google Scholar
  27. Hauxwell, J., J. Cebrian, C. Furlong, andI. Valiela. 2001. Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems.Ecology 82:1007–1022.Google Scholar
  28. Heck, Jr.,K. L., J. R. Pennock, J. F. Valentine, L. D. Coen, andS. A. Sklenar. 2000. Effects of nutrient enrichment and small predator density on seagrass ecosystems: An experimental assessment.Limnology and Oceanography 45:1041–1057.CrossRefGoogle Scholar
  29. Howarth, R. W. 1988. Nutrient limitation of net primary production in marine ecosystems, p. 89–110.In R. F. Johnston (ed.), Annual Review of Ecology and Systematics, Volume 19. Annual Reviews Inc., Palo Alto, California.Google Scholar
  30. Ibarra-Obando, S. E., K. L. J. Heck, andP. M. Spitzer 2004. Effects of simultaneous changes in light, nutrients, and herbivory levels, on the structure and function of a subtropical turtlegrass meadow.Journal of Experimental Marine Biology and Ecology 301:193–224.CrossRefGoogle Scholar
  31. Jeffrey, S. W. andG. F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls,a, b,c1, andc2 in higher plants, algae and natural phytoplankton.Biochemie und Physiologie der Pflanzen 167:191–194.Google Scholar
  32. Jensen, H. S., K. J. McGlathery, R. Marino, andR. W. Howarth. 1998. Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds.Limnology and Oceanography 43:799–810.CrossRefGoogle Scholar
  33. Kennish, M. J. 2002. Environmental threats and environmental future of estuaries.Environmental Conservation 29:78–107.CrossRefGoogle Scholar
  34. Koch, M. S., R. E. Benz, andD. T. Rudnick. 2001. Solid-phase phosphorus pools in highly organic carbonate sediments of northeastern Florida Bay.Estuarine Coastal and Shelf Science 52: 279–291.CrossRefGoogle Scholar
  35. Kuffner, I. B. andV. J. Paul. 2001. Effects of nitrate, phosphate, and iron on the growth of macroalgae and benthic cyanobacteria from Cocos Lagoon, Guam.Marine Ecology Progress Series 222:63–72.CrossRefGoogle Scholar
  36. Lapointe, B. E. 1989. Macroalgal production and nutrient relations in oligotrophic areas of Florida Bay.Bulletin of Marine Science 44:312–323.Google Scholar
  37. Lapointe, B. E. andP. J. Barile 2004. Comment on J. C. Zieman, J. W. Fourqurean, and T. A. Frankovich. “Seagras dieoff in Florida Bay: Long-term trends in abundance and growth of turtle grass,Thalassia testudinum.” 1999.Estuaries 22: 460–470.Estuaries 27:157–164.Google Scholar
  38. Larned, S. T. 1998. Nitrogen-versus phosphorus-limited growth and sources of nutrients for coral reef macroalgae.Marine Biology 132:409–421.CrossRefGoogle Scholar
  39. Lavrentyev, P. J., H. A. Bootsma, T. H. Johengen, J. F. Cavaletto, andW. S. Gardner. 1998. Microbial plankton response to resource limitation: Insights from the community structure and seston stoichiometry in Florida Bay, USA.Marine Ecology Progress Series 165:45–57.CrossRefGoogle Scholar
  40. Lee, K.-S. andK. H. Dunton. 2000. Effects of nitrogen enrichment on biomass allocation, growth, and leaf morphology of the seagrassThalassia testudinum.Marine Ecology Progress Series 196:39–48.CrossRefGoogle Scholar
  41. Lewis, M. A., D. E. Weber, L. R. Goodman, R. S. Stanley, W. G. Craven, J. M. Patrick, R. L. Quarles, T. H. Roush, andJ. M. Macauley. 2000. Periphyton and sediment bioassessment in north Florida Bay.Environmental Monitoring and Assessment 65:503–522.CrossRefGoogle Scholar
  42. Marbà, N. andC. M. Duarte. 2003. Scaling of ramet size and spacing in seagrasses: Implications for stand development.Aquatic Botany, 77:87–98.CrossRefGoogle Scholar
  43. Marbà, N., M. A. Hemminga, M. A. Mateo, C. M. Duarte, Y. E. M. Mass, J. Terrados, andE. Gacia. 2002. Carbon and nitrogen translocation between seagrass ramets.Marine Ecology Progress Series 226:287–300.CrossRefGoogle Scholar
  44. Matheson, Jr.,R. E., D. K. Camp, S. M. Sogard, andK. A. Bjorgo. 1999. Changes in seagrass-associated fish and crustacean communities on Florida Bay mud banks: The effects of recent ecosystem changes?Estuaries 22:534–551.CrossRefGoogle Scholar
  45. McClanahan, T. R. 1992. Epibenthic gastropods of the middle Florida Keys: The role of habitat and environmental stress on assemblage composition.Journal of Experimental Marine Biology and Ecology 160:169–190.CrossRefGoogle Scholar
  46. McGlathery, K. J. 1995. Nutrient and grazing influences on a subtropical seagrass community.Marine Ecology Progress Series 122:239–252.CrossRefGoogle Scholar
  47. McGlathery, K. J. 2001. Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters.Journal of Phycology 37:453–456.CrossRefGoogle Scholar
  48. McGlathery, K. J., P. Berg, andR. Marino. 2001. Using porewater profiles to assess nutrient availability in seagrass-vegetated carbonate sediments.Biogeochemistry 56:239–263.CrossRefGoogle Scholar
  49. MCSM. 2001. Monroe Country Stormwater Management Master Plan: Volume 1; Section 2.3; Pollution loads targets and analysis. Monroe County, Key West, Florida.Google Scholar
  50. Moncreiff, C. A., M. J. Sullivan, andA. E. Daehnick. 1992. Primary production dynamics in seagrass beds of Mississippi Sound: The contributions of seagrass, epiphytic algae, sand microflora, and phytoplankton.Marine Ecology Progress Series 87:161–171.CrossRefGoogle Scholar
  51. Mutchler, T., M. J. Sullivan, andB. Fry. 2004. Potential of14N isotope enrichment to resolve ambiguities in coastal trophic relationships.Marine Ecology Progress Series 266:27–33.CrossRefGoogle Scholar
  52. Nilsson, P., B. Jonsson, I. Lindstrom, andK. Sundbäck. 1991. Response of a marine shallow-water sediment system to an increased load of inorganic nutrients.Marine Ecology Progress Series 71:275–290.CrossRefGoogle Scholar
  53. Nixon, S. W. 1995. Coastal marine eutrophication: A definition, social causes, and future concerns.Ophelia 41:199–219.Google Scholar
  54. Powell, G. V. N., W. J. Kenworthy, andJ. W. Fourqurean. 1989. Experimental evidence for nutrient limitation of seagrass growth in a tropical estuary with restricted circulation.Bulletin of Marine Science 44:324–340.Google Scholar
  55. Quinn G. P. andM. J. Keough. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge Massachusetts.Google Scholar
  56. Rudnick, D. T., Z. Chen, D. L. Childers, J. N. Boyer, andT. D. Fontaine, III. 1999. Phosphorus and nitrogen inputs to Florida Bay: The importance of the Everglades watershed.Estuaries 22:398–416.CrossRefGoogle Scholar
  57. Short, F. T., M. W. Davis, R. A. Gibson, andC. F. Zimmermann. 1985. Evidence for phosphorus limitation in carbonate sediments of the seagrassSyringodium filiforme.Estuarine Coastal and Shelf Science 20:419–430.CrossRefGoogle Scholar
  58. Smith, V. H., G. D. Tilman, andJ. C. Nekola. 1999. Eutrophication: Impacts of excess nutrient inputs on freshwater., marine, and terrestrial ecosystems.Environmental Pollution 100: 179–196.CrossRefGoogle Scholar
  59. Tomas, C. R., B. Bendis, andK. Johns. 1999. Role of nutrients in regulating plankton blooms in Florida Bay, p. 323–337.In H. Kumpf, K. Steidinger, and K. Sherman (eds.) The Gulf of Mexico Large Marine Ecosystem. Blackwell Science, Malden, Massachusetts.Google Scholar
  60. Tomasko, D. A. andB. E. Lapointe. 1991. Productivity and biomass ofThalassia testudinum as related to water column nutrient availability and epiphyte levels: Field observations and experimental studies.Marine Ecology Progress Series 75:9–17.CrossRefGoogle Scholar
  61. Udy, J. W. andW. C. Dennison. 1997. Growth and physiological responses of three seagrass species to elevated sediment nutrients in Moreton Bay, Australia.Journal of Experimental Marine Biology and Ecology 217:253–277.CrossRefGoogle Scholar
  62. Udy, J. W., W. C. Dennison, W. J. Lee Long, andL. J. McKenzie. 1999. Responses of seagrass to nutrients in the Great Barrier Reef, Australia.Marine Ecology Progress Series 185:257–271.CrossRefGoogle Scholar
  63. Valentine, J. F. andK. L. Heck, Jr. 2001. The role of leaf nitrogen content in determining turtlegrass (Thalassia testudinum) grazing by a generalized herbivore in the northeastern Gulf of Mexico.Journal of Experimental Marine Biology and Ecology 258:65–86.CrossRefGoogle Scholar
  64. Valiela, I., J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh, andK. Foreman. 1997. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences.Limnology and Oceanography 42:1105–1118.CrossRefGoogle Scholar
  65. van Montfrans, J., R. J. Orth, andS. A. Vay. 1982. Preliminary studies of grazing byBittum varium on eelgrass periphyton.Aquatic Botany 14:75–89.CrossRefGoogle Scholar
  66. Welschmeyer, N. A. 1994. Fluorometric analysis of chlorophylla in the presence of chlorophyllb and pheopigments.Limnology and Oceanography 39:1985–1992.CrossRefGoogle Scholar
  67. Williams, S. L. andM. H. Ruckelshaus. 1993. Effects of nitrogen availability and herbivory on eelgrass (Zostera marina) and epiphytes.Ecology 74:904–918.CrossRefGoogle Scholar
  68. Zieman, J. C., J. W. Fourqurean, andT. A. Frankovich. 1999. Seagrass die-off in Florida Bay: Long-term trends in abundance and growth of turtle grass,Thalassia testudinum.Estuaries 22:460–470.CrossRefGoogle Scholar
  69. Zieman, J. C., J. W. Fourqurean, andR. L. Iverson. 1989. Distribution, abundance and productivity of seagrasses and macroalgae in Florida Bay.Bulletin of Marine Science 44:292–311.Google Scholar
  70. Zupo, V. andW. G. Nelson. 1999. Factors influencing the association patterns ofHippolyte zostericola andPalaemonetes intermedius (Decapoda: Natantia) with seagrasses of the Indian River Lagoon, Florida.Marine Biology 134:181–190.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2005

Authors and Affiliations

  • Anna R. Armitage
    • 1
  • Thomas A. Frankovich
    • 1
  • Kenneth L. Heck
    • 2
  • James W. Fourqurean
    • 1
  1. 1.Department of Biological Sciences and Southeast Environmental Research CenterFlorida International UniversityMiami
  2. 2.Dauphin Island Sea LaboratoryDauphin Island

Personalised recommendations