Journal of Electronic Materials

, Volume 35, Issue 5, pp 862–868 | Cite as

ZnO spintronics and nanowire devices

  • S. J. Pearton
  • D. P. Norton
  • Y. W. Heo
  • L. C. Tien
  • M. P. Ivill
  • Y. Li
  • B. S. Kang
  • F. Ren
  • J. Kelly
  • A. F. Hebard


ZnO is a very promising material for spintronics applications, with many groups reporting room-temperature ferromagnetism in films doped with transition metals during growth or by ion implantation. In films doped with Mn during pulsed laser deposition (PLD), we find an inverse correlation between magnetization and electron density as controlled by Sn-doping. The saturation magnetization and coercivity of the implanted single-phase films were both strong functions of the initial anneal temperature, suggesting that carrier concentration alone cannot account for the magnetic properties of ZnO:Mn and factors such as crystalline quality and residual defects play a role. Plausible mechanisms for ferromagnetism include the bound magnetic polaron model or exchange that is mediated by carriers in a spin-split impurity band derived from extended donor orbitals. The progress in ZnO nanowires is also reviewed. The large surface area of nanorods makes them attractive for gas and chemical sensing, and the ability to control their nucleation sites makes them candidates for microlasers or memory arrays. Single ZnO nanowire depletion-mode metal-oxide semiconductor field effect transistors exhibit good saturation behavior, threshold voltage of ∼−3 V, and a maximum transconductance of 0.3 mS/mm. Under ultraviolet (UV) illumination, the drain-source current increased by approximately a factor of 5 and the maximum transconductance was ∼5 mS/mm. The channel mobility is estimated to be ∼3 cm2/Vss, comparable to that for thin film ZnO enhancement mode metal-oxide semiconductor field effect transistors (MOSFETs), and the on/off ratio was ∼25 in the dark and ∼125 under UV illumination. The Pt Schottky diodes exhibit excellent ideality factors of 1.1 at 25°C, very low reverse currents, and a strong photoresponse, with only a minor component with long decay times thought to originate from surface states. In the temperature range from 25°C to 150°C, the resistivity of nanorods treated in H2 at 400°C prior to measurement showed an activation energy of 0.089 eV and was insensitive to ambient used. By contrast, the conductivity of nanorods not treated in H2 was sensitive to trace concentrations of gases in the measurement ambient even at room temperature, demonstrating their potential as gas sensors. Sensitive pH sensors using single ZnO nanowires have also been fabricated.

Key words

ZnO nanorods ferromagnetism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. von Molnar and D. Read,Proc. IEEE 91, 715 (2003).CrossRefGoogle Scholar
  2. 2.
    H. Ohno,J. Vac. Sci. Technol. B 18, 2039 (2000).CrossRefGoogle Scholar
  3. 3.
    T. Dietl,Semicond. Sci. Technol. 17, 377 (2002).CrossRefGoogle Scholar
  4. 4.
    S.J. Pearton et al.,J. Appl. Phys. 93, 1 (2003).CrossRefGoogle Scholar
  5. 5.
    S.J. Pearton, C.R. Abernathy, D.P. Norton, A.F. Hebard, Y.D. Park, L.A. Boatner, and J.D. Budai,Mater. Sci. Eng. R40, 137 (2003).Google Scholar
  6. 6.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand,Science 287, 1019 (2000).CrossRefGoogle Scholar
  7. 7.
    K. Sato and H. Katayama-Yoshida,Semicond. Sci. Technol. 17, 367 (2002).CrossRefGoogle Scholar
  8. 8.
    W. Prellier, A. Fouchet, B. Mercey, and J. Phys,Condensed Matter 15, R1583 (2003).Google Scholar
  9. 9.
    T. Fukumura, Y. Yamada, H. Toyosaki, T. Hasegawa, H. Koinuma, and M. Kawasaki,Appl. Surf. Sci. 131, 453 (2004).Google Scholar
  10. 10.
    Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma,Science 291, 854 (2001).CrossRefGoogle Scholar
  11. 11.
    Y. Matsumoto, R. Takahashi, M. Murakami, T. Koida, X.J. Fan, T. Hasegawa, T. Fukumura, M. Kawasaki, S.Y. Koshihara, and H. Koinuma,Jpn. J. Appl. Phys. 40, L1204 (2001).Google Scholar
  12. 12.
    K. Sato and H. Katayama-Yoshida,Jpn. J. Appl. Phys. 39, L555 (2000).Google Scholar
  13. 13.
    K. Ueda, H. Tabata, and T. Kawai,Appl. Phys. Lett. 79, 988 (2001).CrossRefGoogle Scholar
  14. 14.
    S.G. Yang, A.B. Pakhomov, S.T. Hung, and C.Y. Wong,IEEE Trans. Magn. 38, 2877 (2002).CrossRefGoogle Scholar
  15. 15.
    N. Wakano, Y. Fujimura, N. Morinaga, A. Abe, N. Ahida, and T. Ito,Physica E 10, 260 (2001).CrossRefGoogle Scholar
  16. 16.
    T. Fukumura, Z.W. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki,Appl. Phys. Lett. 75, 3366 (1999).CrossRefGoogle Scholar
  17. 17.
    M. Berciu and R.N. Bhatt,Phys. Rev. Lett. 87, 108203 (2001).CrossRefGoogle Scholar
  18. 18.
    T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, and T. Ito,Physica C 10, 260 (2001).Google Scholar
  19. 19.
    T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki,Appl. Phys. Lett. 75, 3366 (1999).CrossRefGoogle Scholar
  20. 20.
    S.W. Jung, S.-J. An, G.-C. Yi, C.U. Jung, S.-I. Lee, and S. Cho,Appl. Phys. Lett. 80, 4561 (2002).CrossRefGoogle Scholar
  21. 21.
    D.P. Norton, S.J. Pearton, A.F. Hebard, N. Theodoropoulou, L.A. Boatner, and R.G. Wilson,Appl. Phys. Lett. 82, 239 (2003).CrossRefGoogle Scholar
  22. 22.
    D.P. Norton et al.,Appl. Phys. Lett. 83, 2294 (2003).CrossRefGoogle Scholar
  23. 23.
    K. Sato and H. Katayama-Yoshida,Mater. Res. Soc. Symp. Proc. 666, F4.6.1 (2001).Google Scholar
  24. 24.
    S.R. Shinde et al.,Phys. Rev. B: Condens. Matter Mater. Phys. 67, 115211 (2003).Google Scholar
  25. 25.
    A. Punnoose, M.S. Seedra, W.K. Park, and J.S. Moodera,J. Appl. Phys. 93, 7867 (2003).CrossRefGoogle Scholar
  26. 26.
    H. Nakagawa and H. Katayama-Yoshida,Jpn. J. Appl. Phys. 40, L1355 (2001).Google Scholar
  27. 27.
    M. Berciu and R.N. Bhatt,Physica B 312/313, 815 (2002).CrossRefGoogle Scholar
  28. 28.
    A.C. Durst, R.N. Bhatt, and P.A. Wolff,Phys. Rev. B: Condens. Matter Mater. Phys. 65, 235205 (2002).Google Scholar
  29. 29.
    J.-H. Kim, H. Kim, D. Kim, Y.-E. Ihm, and W.-K. Choo,J. Appl. Phys. 92, 6066 (2002).CrossRefGoogle Scholar
  30. 30.
    H. Saeki, H. Tabata, and T. Kawai,Solid State Commun. 120, 439 (2001).CrossRefGoogle Scholar
  31. 31.
    Y.M. Cho, W.-K. Choo, H. Kim, D. Kim, and Y.-E. Ihm,Appl. Phys. Lett. 80, 3358 (2002).CrossRefGoogle Scholar
  32. 32.
    H.J. Lee, S.Y. Jeong, C.R. Cho, and C.H. Park,Appl. Phys. Lett. 81, 4020 (2002).CrossRefGoogle Scholar
  33. 33.
    P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M. Osorio Guillen, B. Johansson, and G.A. Gehring,Nature Mater. 2, 673 (2003).CrossRefGoogle Scholar
  34. 34.
    S.J. Hahn, J.W. Song, C.H. Yang, S.H. Park, J.H. Park, Y.H. Jeong, and K.W. Rhie,Appl. Phys. Lett. 81, 4212 (2002).CrossRefGoogle Scholar
  35. 35.
    K. Rode, A. Anane, R. Mattana, J.-P. Contour, O. Durand, and R. LeBourgeois,J. Appl. Phys. 93, 7676 (2003).CrossRefGoogle Scholar
  36. 36.
    N. Theordoropoulou et al. (to be published).Google Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • S. J. Pearton
    • 1
  • D. P. Norton
    • 1
  • Y. W. Heo
    • 1
  • L. C. Tien
    • 1
  • M. P. Ivill
    • 1
  • Y. Li
    • 1
  • B. S. Kang
    • 2
  • F. Ren
    • 2
  • J. Kelly
    • 3
  • A. F. Hebard
    • 3
  1. 1.Materials Science EngineeringUniversity of FloridaGainesville
  2. 2.Chemical EngineeringUniversity of FloridaUSA
  3. 3.Physics, University of FloridaUSA

Personalised recommendations