Advertisement

Journal of Electronic Materials

, Volume 35, Issue 5, pp 852–856 | Cite as

Co-doped ZnO dilute magnetic semiconductor

  • John T. Prater
  • Shivaraman Ramachandran
  • Ashutosh Tiwari
  • Jagdish Narayan
Article

Abstract

This paper reports on recent findings in the Co-doped ZnO system where as-deposited samples with n-type semiconductor properties display magnetic ordering above room temperature. Detailed atomic scale structural characterization has eliminated clustering and second-phase formation as the source of the magnetic behavior. Upon high-temperature annealing in oxygen, the samples become insulating and the magnetization drops. This suggests that the observed magnetic behavior of the oxide is directly related to the presence of intrinsic defects, notably oxygen vacancies and Zn interstitials. These defects are believed to mediate exchange coupling of the Co spins through electron doping of the matrix, and perhaps also the formation of bound magnetic polarons.

Key words

Dilute magnetic semiconductor Co-doped ZnO oxygen annealing magnetic hysteresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ohno,Science 281, 951 (1998).CrossRefGoogle Scholar
  2. 2.
    Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D.D. Awschalom,Nature 402, 790 (1999).CrossRefGoogle Scholar
  3. 3.
    A.M. Nazmul, S. Sugahara, and M. Tanaka,Phys. Rev. B: Condens. Matter Mater. Phys. 67, 241308 (2003).Google Scholar
  4. 4.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand,Science 287, 1019 (2000).CrossRefGoogle Scholar
  5. 5.
    K. Ueda, H. Tabata, and T. Kawai,Appl. Phys. Lett. 79, 988 (2001).CrossRefGoogle Scholar
  6. 6.
    H.-J. Lee, S.-Y. Jeong, C.R. Cho, and C.H. Park,Appl. Phys. Lett. 81, 4020 (2002).CrossRefGoogle Scholar
  7. 7.
    S.G. Yang, A.B. Pakhomov, S.T. Hung, and C.Y. Wong,IEEE Trans. Magn. 38, 2877 (2002).CrossRefGoogle Scholar
  8. 8.
    Y.M. Cho, W.K. Choo, H. Kim, D. Kim, and Y. Ihm,Appl. Phys. Lett. 80, 3358 (2002).CrossRefGoogle Scholar
  9. 9.
    S. Ramachandran, A. Tiwari, and J. Narayan,Appl. Phys. Lett. 84, 5255 (2004).CrossRefGoogle Scholar
  10. 10.
    Z.L. Wang, J.S. Yin, W.D. Mo, and Z.J. Zhang,J. Phys. Chem. B 101, N35 (1997).Google Scholar
  11. 11.
    P. Koidl,Phys. Rev. B: Condens. Matter Mater. Phys. 15, 2493 (1977).Google Scholar
  12. 12.
    K.J. Kim and Y.R. Park,Appl. Phys. Lett. 81, 1420 (2002).CrossRefGoogle Scholar
  13. 13.
    J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, and M. Venkatesan,Appl. Phys. Lett. 84, 1332 (2004).CrossRefGoogle Scholar
  14. 14.
    S.A. Chambers (Presentation H6.6, presented at MRS 2004 Fall Conf., Boston, MA, Nov. 29–Dec. 3, 2004).Google Scholar
  15. 15.
    S.A. Chambers, T. Droubay, C.M. Wang, A.S. Lea, R.F.C. Farrow, L. Folks, V. Deline, and S. Anders,Appl. Phys. Lett. 82, 1257 (2003).CrossRefGoogle Scholar
  16. 16.
    A.C. Tuan et al.,Phys. Rev. B: Condens. Matter Mater. Phys. 70, 054424 (2004).Google Scholar
  17. 17.
    T. Kasuya,Solid State Commun. 8, 1635 (1970).CrossRefGoogle Scholar
  18. 18.
    D.C. Look, J.W. Hemsky, and J.R. Sizelove,Phys. Rev. Lett. 82, 2552 (1999).CrossRefGoogle Scholar
  19. 19.
    A.F. Kohan, G. Ceder, D. Morgan, and C.G. Van de Walle,Phys. Rev. B: Condens. Matter Mater. Phys. 61, 15019 (2000).Google Scholar
  20. 20.
    A. Janotti and C.G. Van de Walle,Appl. Phys. Lett. 87, 122102 (1985).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • John T. Prater
    • 1
  • Shivaraman Ramachandran
    • 2
  • Ashutosh Tiwari
    • 2
  • Jagdish Narayan
    • 2
  1. 1.Army Research OfficeResearch Triangle Park
  2. 2.Department of Materials Science & EngineeringNorth Carolina State UniversityRaleigh

Personalised recommendations