Skip to main content
Log in

A diameter-selective chiral separation of single-wall carbon nanotubes using nitronium lons

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We propose a method for a diameter-selective removal of metallic single-walled carbon nanotubes (m-SWCNTs) from semiconducting (s-) ones. Our separation technique is capable of 100% separation of semiconducting and metallic nanotubes for small diameter nanotubes. We dispersed SWCNT powder by sonication in a mixed solution of tetramethylene sulfone and chloroform, where nitronium ions were well disolved. Positively charged nitronium ions were intercalated into nanotube bundles, where the intercalation was promoted also by the counter ions. Nitronium ions selectively attacked the sidewall of m-SWCNTs due to the abundant presence of electron density at the Fermi level, thus yielding stronger binding energy compared to the counterpart s-SWCNTs. The s-SWCNTs were left on the filter after filtration, whereas m-SWCNTs were perfectly destroyed by nitronium ions and drained away as amorphous carbons. This preferable adsorption became obscured for nanotubes with diameters greater than 1.1 nm. The effectiveness of removing m-SWCNTs was confirmed by the transmission electron microscope observations, x-ray photoemission spectra, resonant Raman spectra, and absorption spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Krupke, F. Hennrich, H.V. Löhneysen, M. Manfred, and M.M. Kappes,Science 301, 344 (2003).

    Article  CAS  Google Scholar 

  2. M. Zheng et al.,Science 302, 1545 (2003).

    Article  CAS  Google Scholar 

  3. D. Chattopadhyay, I. Galeska, and F. Papadimitrakopoulos,J. Am. Chem. Soc. 125, 3370 (2003).

    Article  CAS  Google Scholar 

  4. Z. Chen, X. Du, C.D. Rancken, H.-P. Cheng, and A.G. Rinzler,Nano Lett. 3, 1245 (2003).

    Article  CAS  Google Scholar 

  5. G.G. Samsonidze, S.G. Chou, A.P. Santas, V.W. Brar, G.F. Dresselhaus, M.S. Dresselhaus, A. Selbot, A.K.S. Ünlü, B.B. Goldberg, D. Chattopadhyay, S.N. Kim, and F. Padadimitrakopoulos,Appl. Phys. Lett. 85, 1006 (2004).

    Article  CAS  Google Scholar 

  6. K.S. Kim, D.J. Bae, J.R. Kim, K.A. Park, S.C. Lim, J.-J. Kim, W.B. Choi, C.Y. Park, and Y.H. Lee,Adv. Mater. 14, 1818 (2002).

    Article  CAS  Google Scholar 

  7. K.H. An, J.G. Heo, K.G. Jeon, D.J. Bae, C. Jo, C.W. Yang, C.-Y. Park, and Y.H. Lee,Appl. Phys. Lett. 80, 4235 (2002).

    Article  CAS  Google Scholar 

  8. K.H. An, K.A. Park, J.G. Heo, Lim S.C. Jeon, C.W. Yang, Y.S. Lee, and Y.H. Lee,J. Am. Chem. Soc. 125, 3057 (2003).

    Article  CAS  Google Scholar 

  9. M.S. Strano, C.A. Dyke, M.L. Usrey, P.W. Barone, M.J. Allen, H. Shan, C. Kittrell, R.H. Hauge, J.M. Tour, and R.E. Smalley,Science 301, 1519 (2003).

    Article  CAS  Google Scholar 

  10. M. Yudasaka, M. Zhang, and S. Iijima,Chem. Phys. Lett. 374, 132 (2003).

    Article  CAS  Google Scholar 

  11. S. Banerjee and S.S. WongNano Lett. 4, 1445 (2004).

    Article  CAS  Google Scholar 

  12. W.C. Forsman and H.E. Mertwoy,Synth. Met. 2, 171 (1980).

    Article  CAS  Google Scholar 

  13. K.H. An, K.A. Park, J.G. Heo, J.Y. Lee, Ku K. Jeon, S.C. Lim, C.W. Yang, Y.S. Lee, and Y.H. Lee,J. Am. Chem. Soc. 125, 3057 (2003).

    Article  CAS  Google Scholar 

  14. H.C. Choi, S.Y. Kim, W.S. Jang, S.Y. Bae, J. Park, K.L. Kim, and K. Kim,Chem. Phys. Lett. 399, 255 (2004).

    Article  CAS  Google Scholar 

  15. T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, and N.M.D. Brown.Carbon 43, 153 (2004).

    Article  Google Scholar 

  16. S. Biniak, G. Szymański, J. Siedlewski, and A. Światkowski,Carbon 35, 1799 (1997).

    Article  CAS  Google Scholar 

  17. T. Hayashi,Nano Lett. 4, 1001 (2004).

    Article  CAS  Google Scholar 

  18. D.W. Zeng, B.L. Zhu, C.S. Xie, W.L. Song, and A.H. Wang,Mater. Sci. Eng. A 366, 332 (2004).

    Article  Google Scholar 

  19. H. Kuzmany, W. Plank, M. Hulman, C. Kramberger, A. Gruneis, T. Pichler, H. Perterlik, and Y. Achiba,Eur. Phys. J. B 22, 307 (2001).

    Article  Google Scholar 

  20. H. Kataura, Y. Kumaza, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba,Synth. Met. 103, 2555 (1999).

    Article  CAS  Google Scholar 

  21. S.D.M. Brown, A. Jorio, P. Corio, M.S. Dresselhaus, G. Dresselhaus, R. Saito, and K. Kneipp,Phys. Rev. B: Condens. Matter Mater. Phys. 63, 155414 (2000).

    Google Scholar 

  22. L. An, Q. Fu, C. Lu, and J. Liu,J. Am. Chem. Soc. 126, 10520 (2004).

    Article  CAS  Google Scholar 

  23. A. Kukovecz, T. Pichler, R. Pfeiffer, and H. Kuzmany,Chem. Commun. 1730 (2002).

  24. A. Kukovecz, T. Pichler, C. Kramberger, and H. Kuzmany,Chem. Commun. 5, 582 (2003).

    CAS  Google Scholar 

  25. L. Kavan and L. Dunsxh,Nano Lett. 3, 969 (2003).

    Article  CAS  Google Scholar 

  26. D.-H. Oh and Y.H. Lee,Phys. Rev. B 58, 7407 (1998).

    Article  CAS  Google Scholar 

  27. K. Seo, C. Kim, K.A. Park, S. Han, B. Kim, and Y.H. Lee, submitted toJ. Am. Chem. Soc. (2005).

  28. T.-I. Jeon, K.-J. Kim, C. Kang, S.-J. Oh, J.-H. Son, K.H. An, D.J. Bae, and Y.H. Lee,Appl. Phys. Lett. 80, 3403 (2002).

    Article  CAS  Google Scholar 

  29. T.-I. Jeon, K.-J. Kim, C. Kang, S.-J. Oh, J.-H. Son, K.H. An, J.Y. Lee, and Y.H. Lee,J. Appl. Phys. 95, 5736 (2004).

    Article  CAS  Google Scholar 

  30. L. Duvilaret, F. Garet, and J.-L. Coutaz,IEEE J. Selected Topics Quantum Electron. 2, 739 (1996).

    Article  Google Scholar 

  31. J.W. Mintmire and C.T. White,Phys. Rev. Lett. 81, 2506 (1998).

    Article  CAS  Google Scholar 

  32. R. Saito, G. Dresselhaus, and M.S. Dresselhaus,Phys. Rev. B 61, 2981 (2000).

    Article  CAS  Google Scholar 

  33. S. Reich and C. Thomsen,Phys. Rev. B 62, 4273 (2000).

    Article  CAS  Google Scholar 

  34. M.E. Itkis, D.E. Perea, S. Niyogi, S.M. Rickard, M.A. Hamon, H. Hu, B. Zho, and R.C. Haddon,Nano Lett. 3, 309 (2003).

    Article  CAS  Google Scholar 

  35. X. Liu, T. Pichler, M. Knupfer, M.S. Golden, J. Fink, H. Kataura, and Y. Achiba,Phys. Rev. B 66, 045411 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, K.H., Yang, CM., Lee, J.Y. et al. A diameter-selective chiral separation of single-wall carbon nanotubes using nitronium lons. J. Electron. Mater. 35, 235–242 (2006). https://doi.org/10.1007/BF02692441

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02692441

Key words

Navigation